Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    If \(tan^{-1}\) x + \(tan^{-1}\)y = \(\frac{4\pi}{5}\), then \(cot^{-1} \)x + \(cot^{-1} \)y equals to

  • Question 2
    1 / -0

    If \(sin^{-1}\)\((\frac{2a}{1+a^2})\) + \(cos^{-1}\)\((\frac{1-a^2}{1+a^2})\) = \(tan^{-1}\)\((\frac{2x}{1-x^2})\), where a, x \(\in\) [0,1) then the value of x is

  • Question 3
    1 / -0

    The value of the expression tan(\(\frac{1}{2}\)\(cos^{-1}\)\(\frac{2}{\sqrt5}\)) is

  • Question 4
    1 / -0

    If | x | \(\leq\) 1, then 2\(tan^{-1}\)x + \(sin^{-1}\)\((\frac{2x}{1+x^2})\) is equal to

  • Question 5
    1 / -0

    If \(cos^{-1 }\)\(\alpha\) + \(cos^{-1 }\)\(\beta\) + \(cos^{-1 }\)\(\gamma\) = 3\(\pi\), then \(\alpha\)(\(\beta\) + \(\gamma\)) + \(\beta\)(\(\gamma\) + \(\alpha\)) + \(\gamma\)(\(\alpha\) + \(\beta\)) equals

  • Question 6
    1 / -0

    The number of real Solution of the equation \(\sqrt{1+cos2x}\) = \(\sqrt2\)\(cos^{-1}\) (cos x) in \([\frac{\pi}{2},\pi]\) is

  • Question 7
    1 / -0

    The principal value of \(sin^{-1}\)\((-\frac{1}{2})\) is

  • Question 8
    1 / -0

    1 + \(cot^2\)\((sin^{-1}x)\) =

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 8

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now