Self Studies

Inverse Trigonometric Functions Test - 20

Result Self Studies

Inverse Trigonometric Functions Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The largest interval lying in $$\left ( \dfrac{-\pi }{2},\dfrac{\pi }{2} \right )$$ for which the function $$\left [ f(x)=4^{-x^{2}}+\cos^{-1}\left ( \dfrac{x}{2}-1 \right )+\log (\cos x) \right ]$$ is defined, is-
    Solution
    For given function to  be defined $$-1 \leq \cfrac{x}{2}-1 \leq 1$$ and $$\cos x > 0$$
    $$\Rightarrow 0 \leq \cfrac{x}{2} \leq 2$$ and  $$ \cfrac{-\pi}{2} \leq x < \cfrac{\pi}{2}$$
    $$\Rightarrow 0 \leq x \leq 4$$ and  $$ \cfrac{-\pi}{2} \leq x < \cfrac{\pi}{2}$$
    Taking common of both we get $$x \in \left[0,\cfrac{\pi}{2}\right)$$
  • Question 2
    1 / -0
    Statement I :  The equation $$(sin^{-1}x)^3+(cos^{-1}x)^3-a\pi^3=0$$ has a solution for all $$a\geqslant \dfrac {1}{32}.$$
    Statement II : For any $$x\epsilon R, sin^{-1}x+cos^{-1}x=\dfrac {\pi}{2}$$ and $$0\leq (sin^{-1}x-\dfrac {\pi}{4})^2\leq \dfrac {9\pi^2}{16}$$.
    Solution
    Say $$f\left( x \right) ={ \left( \sin ^{ -1 }{ x }  \right)  }^{ 3 }+{ \left( \cos ^{ -1 }{ x }  \right)  }^{ 3 }$$
    $$f'\left( x \right) =0$$ at $$x=\dfrac { \pi  }{ 4 } $$
    $$f''\left(x\right) \ge0 $$  at $$x=\dfrac{\pi}{4}$$
    so $$f\left( x \right) =\dfrac { { \pi  }^{ 3 } }{ 32 } $$ This is least value.
    $$\therefore f\left( x \right) \ge a{ \pi  }^{ 3 }$$ has a solution.
    $$\therefore \dfrac{1}{32}\ge$$ $$a$$
    Statement $$ I $$ is incorrect.
    Now $$\dfrac { -\pi  }{ 2 } \le \sin ^{ -1 }{ x } \le \dfrac { \pi  }{ 2 } $$
    $$0\le { \left( \sin ^{ -1 }{ x } -\dfrac { \pi  }{ 4 }  \right)  }^{ 2 }\le \dfrac { 9{ \pi  }^{ 2 } }{ 16 } $$ 
    Min at $$x=\dfrac { \pi  }{ 4 } $$ and max at $$x=\dfrac { \pi  }{ 2 } $$. So, Statement $$I$$ is incorrect and $$II$$ is correct.

  • Question 3
    1 / -0
    $${cos}^{-1}\left \{ \frac{1}{2}x^2+\sqrt{1-x^2}.\sqrt{1-\frac{x^2}{4}} \right \}={cos}^{-1}\frac{x}{2}-{cos}^{-1}x$$ holds for

    Solution
    $$\frac { x }{ 2 } \epsilon (-1,1)$$, $$x\epsilon (-1,1)$$
    Intersection for $${ cos }^{ -1 }\left( \frac { x }{ 2 }  \right) $$ and $${ cos }^{ -1 }(x)$$ to be valid
    Thus x lies from (-1, 1)
    for $$cos\left( { cos }^{ -1 }\left( \frac { x }{ 2 }  \right)  \right) =\frac { x }{ 2 } $$
    $$\frac { x }{ 2 } $$ should be from $$(2n\pi ,(2n+1))$$
    Similarly for $$cos({ cos }^{ -1 }x)=x$$
    x should be from $$(2n\pi ,(2n+1)\pi )$$
    Thus, $$x\epsilon (0,1)$$
  • Question 4
    1 / -0
    Solve: $$\displaystyle { \tan }^{ -1 }\left( \frac { x }{ y }  \right) -{ \tan }^{ -1 }\frac { x-y }{ x+y } $$ is equal to
    Solution
    $$\displaystyle { \tan }^{ -1 }\left( \frac { x }{ y }  \right) -{ \tan }^{ -1 }\frac { x-y }{ x+y } $$
    $$\displaystyle

    ={ \tan }^{ -1 }\left[ \frac { \frac { x }{ y } -\frac { x-y }{ x+y }

     }{ 1+\left( \frac { x }{ y }  \right) \left( \frac { x-y }{ x+y }

     \right)  }  \right] $$
    $$\displaystyle ={ \tan }^{

    -1 }\left[ \frac { \frac { x\left( x+y \right) -y\left( x-y \right)  }{

    y\left( x+y \right)  }  }{ \frac { y\left( x+y \right) +x\left( x-y

    \right)  }{ y\left( x+y \right)  }  }  \right] $$
    $$\displaystyle ={ \tan }^{ -1 }\left( \frac { { x }^{ 2 }+xy-xy+{ y }^{ 2 } }{ xy+{ y }^{ 2 }+{ x }^{ 2 }-xy }  \right) $$
    $$\displaystyle

    ={ \tan }^{ -1 }\left( \frac { { x }^{ 2 }+{ y }^{ 2 } }{ { x }^{ 2 }+{ y

    }^{ 2 } }  \right) ={ \tan }^{ -1 }1=\frac { \pi  }{ 4 } $$
  • Question 5
    1 / -0
    Value of $$\tan^{-1}\begin{Bmatrix}\dfrac{\sin\,2-1}{\cos\,2}\end{Bmatrix}$$ is
    Solution
    $$tan^{-1}\begin{Bmatrix}\dfrac{\sin\,2-1}{\cos\,2}\end{Bmatrix}$$
    $$tan^{-1}\begin{Bmatrix}\dfrac{2\sin1\,cos\,1-[sin^21+\cos^21]}{\cos^21-sin^21}\end{Bmatrix}$$
    $$tan^{-1}\begin{Bmatrix}\dfrac{-[\cos1-\sin1]^2}{(\cos 1-\sin 1)(cos1+sin1)}\end{Bmatrix}$$
    $$tan^{-1}\begin{Bmatrix}\dfrac{\cos 1-\sin 1}{\cos 1+\sin 1}\end{Bmatrix}$$ divide by $$cos1=tan^{-1}(tan(1-\dfrac{\pi}{4}))=1-\dfrac{\pi}{4}$$
  • Question 6
    1 / -0
    The number of triplets $$\left ( x,y,z \right )$$ satisfies the equation $$\displaystyle f\left ( x,y,z \right )= \sin ^{-1}x+\sin ^{-1}y+\sin ^{-1}z= \dfrac{3\pi }{2}$$ is
    Solution
    As $$-\cfrac { \pi  }{ 2 } \le { sin }^{ -1 }\theta \le \cfrac { \pi  }{ 2 } $$

    And for $${ sin }^{ -1 }x+{ sin }^{ -1 }y+{ sin }^{ -1 }z=\cfrac { 3\pi  }{ 2 } $$

    $${ sin }^{ -1 }x={ sin }^{ -1 }y={ sin }^{ -1 }z=\cfrac { \pi  }{ 2 } $$

    $$\Rightarrow x=y=z=1$$

    Hence option 'A' is correct.
  • Question 7
    1 / -0
    Calculate the value of   $$\displaystyle \sin^{-1} \cos \left ( \sin^{-1} x\right )  + \cos^{-1} \sin \left ( \cos^{-1} x \right ) $$. where $$\displaystyle\left | x \right |  \leq  1$$
    Solution
    Given, $$\displaystyle \sin^{-1} \cos \left ( \sin^{-1} x\right )  + \cos^{-1} \sin \left ( \cos^{-1} x \right ) $$

    $$=\displaystyle \sin^{-1} \cos \left ( \cos^{-1} \sqrt{1-x^2}\right )  + \cos^{-1} \sin \left ( \sin^{-1} \sqrt{1-x^2} \right ) $$

    $$=\displaystyle \sin^{-1} \left(\sqrt{1-x^2}\right ) + \cos^{-1}\left ( \sqrt{1-x^2} \right ) =\cfrac{\pi}{2}$$

    Since  $$\sin^{-1}x+\cos^{-1}x = \cfrac{\pi}{2} \forall |x|\leq 1$$
  • Question 8
    1 / -0
    Sin-1 $$(\displaystyle \frac{3}{5})+\mathrm{S}\mathrm{i}\mathrm{n}^{-1}(\frac{5}{13})=\sin_{X}^{-1}$$ then$$\mathrm{x}=$$
  • Question 9
    1 / -0
    If $$\sec^{-1} x+ \sec^{-1}y + \sec^{-1}z = 3\pi$$, then $$xy + yz + zx =$$ _______.
    Solution
    Range of $$\sec^{-1}x\space :\space [0,\pi/2)\cup(\pi/2,\pi]$$
    So $$\sec^{-1}x+\sec^{-1}y+\sec^{-1}z=3\pi$$ only when all of them are equal to $$\pi$$
    That is, $$\sec^{-1}x=\pi,\sec^{-1}y=\pi,\sec^{-1}z=\pi$$
    $$\sec^{-1}x=\pi \rightarrow x=-1 $$
    Similarly, $$y=-1,z=-1$$
    $$\therefore \space xy+yz+zx=1+1+1=3$$
    Hence, $$(C)$$


  • Question 10
    1 / -0
    Find value of $$\cos^{-1}\left(-\dfrac {1}{2}\right)$$.
    Solution
    $$\begin{array}{l} { \cos ^{ -1 }  }\left( { \dfrac { { -1 } }{ 2 }  } \right)  \\ =\pi -{ \cos ^{ -1 }  }\left( { \dfrac { 1 }{ 2 }  } \right)  \\ =\pi -{ \cos ^{ -1 }  }\left( { \cos  \dfrac { \pi  }{ 3 }  } \right)  \\ =\pi -\dfrac { \pi  }{ 3 }  \\ =\dfrac { { 2\pi  } }{ 3 }  \end{array}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now