(a) $$sin2\alpha =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\alpha =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$, where $$t=tan\alpha $$
L.H.S.$$={ tan }^{ -1 }\dfrac { 3t }{ 4+{ t }^{ 2 } } +{ tan }^{ -1 }\dfrac { t }{ 4 } $$
$$={ tan }^{ -1 }t\dfrac { (16+{ t }^{ 2 }) }{ (16+{ t }^{ 2 }) } ={ tan }^{ -1 }(tan\alpha )=\alpha $$
(b) Let us put $$tan\theta =t$$,
$$2\theta =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\theta =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$.
The 2nd term is
$$\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 3.2t }{ 5(1+{ t }^{ 2 })+(1+{ t }^{ 2 }) } =\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 6t }{ 9+{ t }^{ 2 } } $$
$$=\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 2.t/3 }{ 1+{ \left( t/3 \right) }^{ 2 } } =\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 2T }{ 1+{ T }^{ 2 } } $$
$$=\dfrac { 1 }{ 2 } .2{ tan }^{ -1 }T={ tan }^{ -1 }(t/3)$$
$$\therefore $$ $$\theta ={ tan }^{ -1 }2{ t }^{ 2 }-{ tan }^{ -1 }\dfrac { t }{ 3 } ={ tan }^{ -1 }\dfrac { 2{ t }^{ 2 }-t/3 }{ 1+2{ t }^{ 2 }.t/3 } $$
or $$tan\theta =\dfrac { t(6t-1) }{ 3+2{ t }^{ 3 } } $$ or $$t(3+2{ t }^{ 3 })=t(6t-1)$$
$$\therefore $$ $$t=0$$ or $$2{ t }^{ 3 }-6t+4=0$$
or $${ t }^{ 3 }-3t+2=0$$
$$\therefore $$ $$t=0$$ or $$(t-1)({ t }^{ 2 }+t-2)=0$$
or $$t=0$$ or $$(t-1)(t-1)(t+2)=0$$
$$\therefore $$ $$t=0,1,-2$$
$$\therefore $$ $$\theta =n\pi ,n\pi +\pi /4,n\pi +\alpha $$ where $$tan\alpha =-2$$.
(c) Ans (i),(ii)
From given relation, if $$tan\theta =t$$
$$tan\theta =t=\dfrac { 2{ t }^{ 2 }-\dfrac { 1 }{ 3 } t }{ 1+\dfrac { 2 }{ 3 } { t }^{ 3 } } $$
$$\therefore $$ $$t=0$$ or $$1.\left( 1+\dfrac { 2 }{ 3 } { t }^{ 3 } \right) =2t-\dfrac { 1 }{ 3 } $$.
or $$2{ t }^{ 3 }-6t+4=0$$ or $${ t }^{ 3 }-3t+2=0$$
or $$(t+2)({t}^{2}-2t+1)=0$$
or $$(t+2){ \left( t-1 \right) }^{ 2 }=0$$
$$\therefore $$ $$t=tan\theta =-2,1\Rightarrow $$ (i),(ii).
(d) If $$t=tan\theta $$, then $$sin2\theta =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\theta =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$
$$\therefore $$ $$\dfrac { 3sin2\theta }{ 5+4cos2\theta } =\dfrac { 3.2t }{ 5(1+{ t }^{ 2 })+4(1+{ t }^{ 2 }) } =\dfrac { 6t }{ 9+{ t }^{ 2 } } =\dfrac { 2.t/2 }{ 1+{ \left( t/3 \right) }^{ 2 } } =\dfrac { 2tan\alpha }{ 1+{ tan }^{ 2 }\alpha } =sin2\alpha $$
where $$\dfrac { t }{ 3 } =tan\alpha $$
$$\dfrac { 1 }{ 2 } { sin }^{ -1 }\left( \dfrac { 3sin2\theta }{ 5+4cos2\theta } \right) =\alpha ={ tan }^{ -1 }\left( \dfrac { t }{ 3 } \right) ={ tan }^{ -1 }\left( \dfrac { 1 }{ 3 } tan\theta \right) $$
$$\Rightarrow $$ $${ tan }^{ -1 }x={ tan }^{ -1 }\left( \dfrac { 1 }{ 3 } tan\theta \right) $$ $$\therefore $$ $$x=\dfrac { 1 }{ 3 } tan\theta $$