Self Studies

Inverse Trigonometric Functions Test - 21

Result Self Studies

Inverse Trigonometric Functions Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $${ tan }^{ -1 }x+{ tan }^{ -1 }y={ tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,      $$xy<1$$
                                        $$=\pi +{ tan }^{ -1 }\dfrac { x+y }{ 1-xy } $$,      $$xy>1$$.

     Evaluate:  $${ tan }^{ -1 }\dfrac { 3sin2\alpha  }{ 5+3cos2\alpha  } +{ tan }^{ -1 }\left( \dfrac { tan\alpha  }{ 4 }  \right) $$
                                      where $$-\dfrac { \pi  }{ 2 } <\alpha <\dfrac { \pi  }{ 2 } $$
    Solution
    (a) $$sin2\alpha =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\alpha =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$, where $$t=tan\alpha $$
    L.H.S.$$={ tan }^{ -1 }\dfrac { 3t }{ 4+{ t }^{ 2 } } +{ tan }^{ -1 }\dfrac { t }{ 4 } $$
            $$={ tan }^{ -1 }t\dfrac { (16+{ t }^{ 2 }) }{ (16+{ t }^{ 2 }) } ={ tan }^{ -1 }(tan\alpha )=\alpha $$


    (b) Let us put $$tan\theta =t$$,
     $$2\theta =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\theta =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$.
    The 2nd term is 
    $$\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 3.2t }{ 5(1+{ t }^{ 2 })+(1+{ t }^{ 2 }) } =\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 6t }{ 9+{ t }^{ 2 } } $$
            $$=\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 2.t/3 }{ 1+{ \left( t/3 \right)  }^{ 2 } } =\dfrac { 1 }{ 2 } { sin }^{ -1 }\dfrac { 2T }{ 1+{ T }^{ 2 } } $$
    $$=\dfrac { 1 }{ 2 } .2{ tan }^{ -1 }T={ tan }^{ -1 }(t/3)$$
    $$\therefore $$    $$\theta ={ tan }^{ -1 }2{ t }^{ 2 }-{ tan }^{ -1 }\dfrac { t }{ 3 } ={ tan }^{ -1 }\dfrac { 2{ t }^{ 2 }-t/3 }{ 1+2{ t }^{ 2 }.t/3 } $$
    or   $$tan\theta =\dfrac { t(6t-1) }{ 3+2{ t }^{ 3 } } $$  or    $$t(3+2{ t }^{ 3 })=t(6t-1)$$
    $$\therefore $$   $$t=0$$  or   $$2{ t }^{ 3 }-6t+4=0$$
    or    $${ t }^{ 3 }-3t+2=0$$
    $$\therefore $$    $$t=0$$  or   $$(t-1)({ t }^{ 2 }+t-2)=0$$
    or   $$t=0$$   or  $$(t-1)(t-1)(t+2)=0$$
    $$\therefore $$    $$t=0,1,-2$$
    $$\therefore $$     $$\theta =n\pi ,n\pi +\pi /4,n\pi +\alpha $$   where $$tan\alpha =-2$$.


    (c) Ans (i),(ii)
    From given relation, if $$tan\theta =t$$
           $$tan\theta =t=\dfrac { 2{ t }^{ 2 }-\dfrac { 1 }{ 3 } t }{ 1+\dfrac { 2 }{ 3 } { t }^{ 3 } } $$
    $$\therefore $$   $$t=0$$  or  $$1.\left( 1+\dfrac { 2 }{ 3 } { t }^{ 3 } \right) =2t-\dfrac { 1 }{ 3 } $$.
    or    $$2{ t }^{ 3 }-6t+4=0$$   or   $${ t }^{ 3 }-3t+2=0$$
    or   $$(t+2)({t}^{2}-2t+1)=0$$
    or   $$(t+2){ \left( t-1 \right)  }^{ 2 }=0$$
    $$\therefore $$    $$t=tan\theta =-2,1\Rightarrow $$ (i),(ii).


    (d) If $$t=tan\theta $$, then $$sin2\theta =\dfrac { 2t }{ 1+{ t }^{ 2 } } ,cos2\theta =\dfrac { 1-{ t }^{ 2 } }{ 1+{ t }^{ 2 } } $$
    $$\therefore $$  $$\dfrac { 3sin2\theta  }{ 5+4cos2\theta  } =\dfrac { 3.2t }{ 5(1+{ t }^{ 2 })+4(1+{ t }^{ 2 }) } =\dfrac { 6t }{ 9+{ t }^{ 2 } } =\dfrac { 2.t/2 }{ 1+{ \left( t/3 \right)  }^{ 2 } } =\dfrac { 2tan\alpha  }{ 1+{ tan }^{ 2 }\alpha  } =sin2\alpha $$
    where $$\dfrac { t }{ 3 } =tan\alpha $$
      $$\dfrac { 1 }{ 2 } { sin }^{ -1 }\left( \dfrac { 3sin2\theta  }{ 5+4cos2\theta  }  \right) =\alpha ={ tan }^{ -1 }\left( \dfrac { t }{ 3 }  \right) ={ tan }^{ -1 }\left( \dfrac { 1 }{ 3 } tan\theta  \right) $$
    $$\Rightarrow $$    $${ tan }^{ -1 }x={ tan }^{ -1 }\left( \dfrac { 1 }{ 3 } tan\theta  \right) $$    $$\therefore $$  $$x=\dfrac { 1 }{ 3 } tan\theta $$
  • Question 2
    1 / -0
    If sin $$^{-1}(x-\dfrac{x^2}{2}+\dfrac{x^3}{4}+..............\infty)+$$ cos $$^{-1}(x^2-\dfrac{x^4}{2}+\dfrac{x^6}{4}-...........\infty)$$$$=\dfrac {\pi}{2}$$ and $$0 < x < \sqrt{2}$$ then x =
    Solution
    Given $$\text{sin}^{-1}(x-\dfrac{x^2}{2}+\dfrac{x^3}{4}+..............\infty)+$$  $$\text{cos}^{-1}(x^2-\dfrac{x^4}{2}+\dfrac{x^6}{4}-...........\infty)$$$$=\dfrac {\pi}{2}$$
    As we know that
    $$\text{sin}^{-1} x+\text{cos}^{-1} x=\dfrac{\pi}{2}$$
    So $$x-\dfrac{x^2}{2}+\dfrac{x^3}{4}+..............\infty=$$ $$x^2-\dfrac{x^4}{2}+\dfrac{x^6}{4}-...........\infty$$
    As we know that 
    Sum of infinite $$GP$$ i.e $$a+a r+a r^2+\cdots\infty=\dfrac{a}{1-r}$$
    $$\implies \dfrac{x}{1+\dfrac{x}{2}}=\dfrac{x^2}{1+\dfrac{x^2}{2}}$$
    $$\implies \dfrac{1}{x}+\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{2}$$
    $$\implies x=x^2\implies x=1$$
  • Question 3
    1 / -0
    if f(x)=$${\tan ^{ - 1}}$$(x)than f(x)+f(y) is equal to:
    Solution

    Given that ,$$f\left( x \right)={{\tan }^{-1}}x$$    ….(1)

    Put x=y in equation (1) we get

    $$f\left( y \right)={{\tan }^{-1}}y$$    ….(2)

    Add equation (1) and (2)

    $$f\left( x \right)+f\left( y \right)={{\tan }^{-1}}x+{{\tan }^{-1}}y$$

    Using inverse trigonometry properties, we get

    $${{\tan }^{-1}}x+{{\tan }^{-1}}y$$ $$={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$$

    This is the answer
  • Question 4
    1 / -0
    $$\tan^{-1} \dfrac{1}{2} + \tan^{-1} \dfrac{1}{3} $$ equals
    Solution
    Let  $$\tan^{-1}\cfrac{1}{2}=x$$
    $$\Rightarrow \tan x=\cfrac{1}{2}$$

    Let  $$\tan^{-1}\cfrac{1}{3}=y$$
    $$\Rightarrow \tan y=\cfrac{1}{3}$$

    $$\tan (x+y)=\cfrac{\tan x + \tan y}{1-\tan x.\tan y}$$

    $$=\cfrac{\cfrac{1}{2}+\cfrac{1}{3}}{1-\cfrac{1}{2}\times \cfrac{1}{3}}$$

    $$=1$$

    $$x+y=\tan^{-1}1=\cfrac{\pi }{4}$$
    $$\tan^{-1}\cfrac{1}{2}+\tan^{-1}\cfrac{1}{3}=\cfrac{\pi }{4}$$
  • Question 5
    1 / -0
    For $$x\in(0,\pi/2) $$
    $${\sin ^{ - 1}}(\cos x)=?$$
    Solution

    We have,

    $$ {{\sin }^{-1}}\left( \cos x \right) $$

    $$ ={{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{2}-x \right) \right) $$

    $$ =\dfrac{\pi }{2}-x\,\,\,\,\,\,\,\,\,\,\,\, $$


    Hence, this is the answer.
  • Question 6
    1 / -0
    The number of real values of x satisfying the equation $$\tan^{-1}\left(\dfrac{x}{1-x^2}\right)+\tan^{-1}\left(\dfrac{1}{x^3}\right)=\dfrac{3\pi}{4}$$, is?
    Solution
    $$\tan ^{-1} \cfrac{x^4+1-x^2}{x^3-x^5-x} = \cfrac{3\pi}{4}$$
    $$\cfrac{x^4+1-x^2}{x^3-x^5-x} = -1$$
    $$x^4 + 1 -x^2 + x^3 - x^5-x = 0$$
    Real roots = $$1$$
  • Question 7
    1 / -0
    If $$\sin^{-1}\dfrac{1}{3} + \sin^{-1}\dfrac{2}{3} = \sin^{-1}x$$, then $$x$$ is equal to-
    Solution
    Given $$ sin^{-1}\dfrac{1}{3}+sin^{-1}\dfrac{2}{3} = sin^{-1}x $$
    To find x 
    Sol :- $$ sin^{-1}\dfrac{1}{3}+sin^{-1}\dfrac{2}{3} $$
    $$ = sin^{-1}\left ( \dfrac{1}{3}\sqrt{1-\dfrac{4}{9}}+\dfrac{2}{3}\sqrt{1-\dfrac{1}{9}} \right ) $$  $$ \left [ sin^{-1}x+sin^{-1}y = sin^{-1}(x+\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}) \right ] $$
    $$ = sin^{-1}\left ( \dfrac{1}{3}\dfrac{\sqrt{5}}{3}+\dfrac{2}{3}\dfrac{\sqrt{8}}{3} \right ) $$
    $$ = sin^{-1}\left ( \dfrac{\sqrt{5}+4\sqrt{2}}{9} \right ) $$
    $$ \because sin^{-1}\dfrac{1}{3}+sin^{-1}\dfrac{2}{3} = sin^{-1}x $$ (Given)
    $$ \therefore x = \dfrac{\sqrt{5}+4\sqrt{2}}{9} $$ 
  • Question 8
    1 / -0
    $${\tan ^{ - 1}}2 + {\tan ^{ - 1}}3$$ is equal to 
    Solution
    A) We know that
    tan$$^ { - 1 } \mathrm { x } + \tan ^ { - 1 } \mathrm { y } = \tan ^ { - 1 } \left( \dfrac { \mathrm { x } + \mathrm { y } } { 1 - \mathrm { xy } } \right)$$

    Thus
    $$= \tan$$$$^ { - 1 } \mathrm { 2 } + \tan ^ { - 1 } \mathrm { 3 } = \tan ^ { - 1 } \left( \dfrac { \mathrm { 2 } + \mathrm { 3} } { 1 - \mathrm { 6 } } \right)$$

    $$=\tan^{-1} {(-1)}$$

    $$=- \dfrac { \pi } { 4 }$$
  • Question 9
    1 / -0
    The value of $$\cos^{-1} (\cos 12) - \sin^{-1} (\sin 12)$$ is 
    Solution
    $$12\,rad$$ lies in $$4th$$ quadrant
    $$\dfrac{7\pi}{2}<12<4\pi$$
    Let $$\theta $$ be an acute angle such that
    $$12+\theta=4\pi$$
    $$\therefore 12=4\pi-\theta$$     or    $$\theta=4\pi-12$$

    $$\cos^{-1}(\cos12)-\sin^{-1}(\sin12)$$
    $$=\cos^{-1}(\cos(4\pi-\theta))-\sin^{-1}(\sin(4\pi-\theta))$$
    $$=\cos^{-1}(\cos\theta)-\sin^{-1}(-\sin\theta)$$
    $$=\cos^{-1}(\cos\theta)-\sin^{-1}(\sin(-\theta))$$
    $$=\theta-(-\theta)$$
    $$=2\theta$$
    $$=2(4\pi-12)$$
    $$=8\pi-24$$
    $$\boxed{\therefore\,\cos^{-1}(\cos12)-\sin^{-1}(\sin12)=8\pi-24}$$
  • Question 10
    1 / -0
    $$\tan(\cot^{-1}x)$$ is equal to :
    Solution
    $$\tan(\cot^{-1}x)$$ 

    $$=\tan \left(\tan^{-1}\left({\dfrac1x}\right)\right)$$ 

    $$=\dfrac1x$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now