Self Studies

Inverse Trigonometric Functions Test - 24

Result Self Studies

Inverse Trigonometric Functions Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x$$ takes negative permissible value, then  $$\sin^{-1}x=$$
    Solution
    If $$-1\leq x <0$$, then $$ \dfrac{-\pi}{2} \leq sin^{-1}(x) < 0$$
    Let, $$sin \theta = x$$
    Hence, $$ \dfrac{-\pi}{2} \leq \theta < 0$$
    Hence, $$cos \theta = \sqrt{1-x^2}$$
    Since, the range of $$cos^{-1}(x)$$ is $$[0,\pi]$$, 
    $$\theta = - cos^{-1} ( \sqrt{1-x^2} )$$ 
  • Question 2
    1 / -0
    There is flag-staff at the top of $$10$$ metres high tower. lf the flag-staff makes an angle $$\tan ^{ -1 }{ \left( 1/8 \right)  }$$ at a point $$24$$ metres away from the tower, then the height of the flag staff in metres is
    Solution
    $$tan\theta =\frac{1}{8}, tan\alpha =\frac{10}{24}$$
    $$=\frac{5}{12}$$
    $$tan(\alpha +\theta )= \frac{h+10}{24}$$
    $$\frac{tan\alpha +tan\theta} {1-tan\alpha tan\theta }=\frac{h+10}{24}$$
    $$\frac{1}{8}+\frac{5}{12}1-\frac{5}{12} \times\frac{1}{8}=\frac{h+10}{24}$$
    $$\frac{12+40}{(69-5)}=\frac{h+10}{24}$$ 
    $$\frac{25\times24}{91}=4+10$$
    $$h=\frac{338}{91}= \frac{26}{7}$$

  • Question 3
    1 / -0
    If $$\tan(cos^{-1}x)=\sin (\sec^{-1} (\sqrt{5}) )$$, then $$x=$$
    Solution
    If $$tan (cos ^{-1}x)=sin (sec^{-1}\sqrt{5})$$
    $$\therefore Let \space \alpha =cos ^{-1}x$$
    $$cos \alpha =x$$
    $$\displaystyle \therefore tan \alpha =\frac{\sqrt{1-x^{2}}}{x}$$
    $$\displaystyle \therefore tan (cos ^{-1}x)=\frac{\sqrt{1-x^{2}}}{x}=\dfrac{2}{\sqrt{5}}$$
    $$\Rightarrow 5(1-x^{2})=4x^{2}$$
    $$5=9x^{2}$$
    $$\displaystyle x=\pm\frac{\sqrt{5}}{3}$$

  • Question 4
    1 / -0
    A tower stands at the top of a hill whose height is three times the height of the tower. The tower is found to subtend an angle of\$$\tan ^{ -1 }{ \left( { 1 }/{ 7 } \right)  } $$ at a point $$2km$$ away on the horizontal throught the foot of the hill. Then the height of the tower is
    Solution
    $$tan\theta =\frac{1}{7}$$
    $$tan\theta =\frac{3h}{2}$$
    $$(tan\theta+\alpha)=\frac{4h}{2}$$
    $$\frac{4tan\alpha}{3}=\frac{tan\theta+tan\alpha}{1-tan\alpha tan\theta}$$
    $$\frac{4tan\alpha}{3}=\frac{1+7tan\alpha}{7-tan\alpha}$$
    $$28tan\alpha-4tan^{2}\theta=3+21tan\theta$$
    $$4tan^{2}\theta-7tan\theta =3+21tan\theta$$
    $$tan\theta=1,\frac{3}{4}$$
    $$h=\frac{2}{3},1/2$$
  • Question 5
    1 / -0
    If $$\theta = sin^{-1}x+cos^{-1}x+tan^{-1}x,\ 0\leq x\leq 1$$, then the smallest interval in which $$\theta$$ lies is given by
    Solution
    $$\theta = sin^{-1}x + cos^{-1} x +tan^{-1} x$$
    Now, $$sin ^{-1}x + cos ^{-1} x = \dfrac{\pi}{2} $$
    $$\Rightarrow \theta = \dfrac{\pi}{2} + tan^{-1}{x} $$
    For ,$$0 \leq x \leq 1 $$
    $$0 \leq tan^{-1} x \leq \dfrac{\pi}{4}$$
    $$\Rightarrow \dfrac{\pi}{2} \leq \theta \leq \dfrac{3\pi}{4} $$
    Hence, option D is correct.
  • Question 6
    1 / -0
    The domain of $$\sin^{-1}[\log_{2}(x^{2}/2)]$$ is
    Solution
    $$\sin ^{-1}(x) domain : x\in [-1,1]$$

    $$\therefore $$domain of $$\displaystyle \sin ^{-1}[\log _{2}\dfrac{x^{2}}{2}]$$

    $$            \therefore \log_{2}\dfrac{x^{2}}{2} \in [-1,1]$$

    $$\displaystyle -1 \leq \log_{2}\frac{x^{2}}{2} \leq 1$$ and $$\displaystyle \frac{1}{2} \leq \frac{x^{2}}{2} \leq 2$$

    $$1\leq x^{2} \leq 4$$

    For $$x^{2} \geq 1$$ 

    $$x\in [-\infty ,-1] \cup [1, \infty ]$$...........(i)
     
    For  $$x^{2}\leq 4$$

    $$x\in [-2,2]$$.................(ii)

    By taking intersection of (i) & (ii)

    $$\therefore x\epsilon [-2,-1] \cup [1,2]$$
  • Question 7
    1 / -0
    $$A$$ vertical pole subtends an angle $$\displaystyle \tan^{-1}(\frac{1}{2})$$ at a point $$P$$ on the ground. The angle subtended by the upper half of the pole at $$P$$ is
    Solution
    as shown in the figure 
    $$tan(tan^{-1}(\dfrac{1}{2}))=\dfrac{1}{2}=\dfrac{2h}{b}$$ .......................(1)

    $$tan(tan^{-1}(\dfrac{1}{2})-\phi)=\dfrac{h}{b}$$ .......................(2)

    (1) divided by (2) we get 
    $$2= \dfrac{\dfrac{1}{2}}{\dfrac{1-\dfrac{tan\phi}{2}}{1+\dfrac{tan\phi}{2}}}$$

    solving the above equation we get

    $$tan\phi= \dfrac{2}{9}$$


    $$\phi= tan^{-1}\dfrac{2}{9}$$

  • Question 8
    1 / -0
    Range of $$\sin^{-1}x-\cos^{-1}x$$ is
    Solution
    range of $$\displaystyle sin ^{-1}x \epsilon [-\frac{\pi }{2} , \frac{\pi }{2}]$$
    range of $$cos ^{-1}x \epsilon [0, \pi ]$$

    $$\therefore f(x)=sin ^{-1}x-cos ^{-1}x=sin ^{-1}x+cos ^{-1}x-2 cos ^{-1}x$$
    $$\displaystyle \quad\quad\quad=\frac{\pi }{2}-2cos ^{-1}x\quad\quad            [\because sin ^{-1}x+cos ^{-1}x=\frac{\pi }{2}] identity$$
    range of $$\displaystyle f(x) \epsilon [\frac{\pi }{2} -2(\pi ) , \frac{\pi }{2}-2(0)]$$
    $$\therefore f(x)\displaystyle \epsilon [-\frac{3\pi }{2} ,\frac{\pi }{2}]$$
  • Question 9
    1 / -0
    $$ABC$$ is a triangular park with $$AB=AC=100$$ cm. $$A$$ clock tower is situated at the midpoint of $$BC$$. The angles of elevation of the top of the tower from $$A$$ and $$B$$ are $$cot ^{-1}3.2$$ and $$cosec ^{-1} 2.6$$. The height of the tower is
    Solution
    $$y^{2}=AD^{2}=100^{2}-BD^{2}=10000-x^{2}$$
    $$\cot^{-1}(3.2)=\alpha,cosec^{-1}(2.6)=\beta)$$
    $$\cot \alpha =3.2$$ & $$ cosec \beta =2.6$$
    $$\cot \alpha =\dfrac{y}{h}$$
    $$\Rightarrow y=3.2 \times h$$
    Now,
    $$\cot \beta =\dfrac{x}{h}$$
    $$x=\cot \beta \times h$$
    $$x=h\sqrt{2.6^{2}-1}$$
    $$x= 2.4h$$
    $$x^{2}+y^{2}=100000$$
    $$\Rightarrow (2.4h)^{2}+(3.2h)^{2}=100^{2}$$
    $$\Rightarrow h^{2}(16)=100^{2}$$
    $$\Rightarrow h=25$$

  • Question 10
    1 / -0
    A vertical pole more than $$100ft$$ high consists of two portions, the lower being $$ 1/3$$ of the whole. lf the upper portion subtends an angle $$\tan^{-1}(1/2)$$ at a point distant 40 ft. from the foot of the pole, the height of the pole is
    Solution
    $$tan=1/2$$
    $$tan\alpha =\frac{h}{3+40}$$
    $$tan(\alpha +\theta )=\frac{h}{40}$$
    $$\dfrac{tan\alpha }{3}=\dfrac{tan\alpha +tan\theta }{1-tan\alpha tan\theta }$$
    $$\dfrac{1+2tan\alpha }{2-tan\alpha }=\dfrac{tan\alpha }{3}$$
    $$3+6tan\alpha =2tan\alpha -tan\alpha $$
    $$tan^{2}\alpha +4tan\alpha +3 =0$$
    $$tan\alpha=-1,tan\alpha=-3$$
    $$1=\frac{h}{120}$$
    $$h=120$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now