Self Studies

Inverse Trigonometric Functions Test - 26

Result Self Studies

Inverse Trigonometric Functions Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The range of the function, $$\displaystyle f\left ( x \right ) = \left ( 1 + \sec^{-1} x \right ) \left ( 1 + \cos^{-1} x \right )$$ is
    Solution
    $$f(x)=(1+sec^{-1}(x))(1+cos^{-1}(x))$$
    Here the limiting component is $$cos^{-1}(x)$$, since the domain of $$cos^{-1}(x)$$ is $$[-1,1]$$.
    Therefore,
    $$f(1)=(1+0)(1+0)$$
    $$=1$$
    $$f(-1)=(1+\pi)(1+\pi)$$
    $$=(1+\pi)^{2}$$
    Hence range of $$f(x)=[1,(1+\pi)^{2}]$$
  • Question 2
    1 / -0
    Number of real value of $$x$$ satisfying the equation, $$\displaystyle \arctan \sqrt{x \left ( x+1 \right )} + \arcsin \sqrt{x \left ( x+1 \right ) + 1} = \frac{\pi}{2}$$ is
    Solution
    Let
    $$f(x)=tan^{-1}(\sqrt{x(x+1)})+sin^{-1}(\sqrt{x(x+1)+1})-\dfrac{\pi}{2}$$
    Hence $$f(x)=0$$ for x={-1,0}.
    Where {} denotes singleton set.
    Hence we have two solutions for the above given equation.
  • Question 3
    1 / -0
    The value of $$x$$ for which $$\sin { \left( \cot ^{ -1 }{ \left( 1+x \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$ is:
    Solution
    We have, $$\sin { \left( \cot ^{ -1 }{ \left( 1+x \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$
    $$\displaystyle \Rightarrow \cos { \left( \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$
    $$\displaystyle \Rightarrow \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  } =2n\pi \pm \tan ^{ -1 }{ x } $$
    Substitute $$\displaystyle n=0\Rightarrow \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  } =\pm \tan ^{ -1 }{ x } =\tan ^{ -1 }{ \left( \pm x \right)  } $$
    $$\displaystyle \Rightarrow \frac { \pi  }{ 2 } =\tan ^{ -1 }{ \left( \pm x \right)  } +\cot ^{ -1 }{ \left( x+1 \right)  } $$
    $$\displaystyle \Rightarrow x+1=\pm x\Rightarrow 2x+1=0\Rightarrow x=-\frac { 1 }{ 2 } $$
  • Question 4
    1 / -0
    Range of $$\displaystyle f\left( x \right)=\sin ^{ -1 }{ x } +\tan ^{ -1 }{ x } +\cos ^{ -1 }{ x } $$ is
    Solution
    Given $$f(x)=\sin^{−1}(x)+\cos^{−1}(x)+\tan^{−1}(x)$$

    First we will calculate domain of function $$f(x)$$
    function $$\sin^{−1}(x)$$ is defined in $$x∈[−1,1]$$ 

    Similarly function $$\cos^{−1}(x)$$ is defined in $$x∈[−1,1]$$
    and function $$\tan^{−1}(x)$$ is defined in $$x∈(−∞,+∞)$$

    So $$f(x)=\sin^{−1}(x)+\cos^{−1}(x)+\tan^{−1}(x)$$ is defined in $$x∈[−1,1]$$

    So $$f(x)=\sin^{−1}(x)+\cos^{−1}(x)+\tan^{−1}(x)$$ is defined in
    $$x∈[−1,1]$$

    So $$f(x)=\dfrac π2+\tan^{−1}(x)$$

    Now $$f′(x)=\dfrac {1}{1+x^2}>0 \, ∀x∈[−1,1]$$

    So $$f(x)$$ is Strictly Increasing function.

    So $$f(−1)=\dfrac π2+\tan^{−1}(−1)=\dfrac π2−\dfrac π4=\dfrac π4$$

    and $$f(+1)=\dfrac π2+\tan^{−1}(1)=\dfrac π2+\dfrac π4=\dfrac {3π}4$$
    So $$f(x)∈[\dfrac π4,\dfrac {3π}4]$$
  • Question 5
    1 / -0
    $$\displaystyle \alpha = \sin^{-1} \left ( \cos \left ( \sin^{-1} x \right ) \right )$$ and $$\displaystyle \beta = \cos^{-1} \left ( \sin \left ( \cos^{-1} x \right ) \right )$$ then:
    Solution
    $$\alpha=sin^{-1}(cos(sin^{-1}(x))))$$
    $$=\dfrac{\pi}{2}-cos^{-1}(cos(\dfrac{\pi}{2}-cos^{-1}(x)))$$
    $$=\dfrac{\pi}{2}-cos^{-1}(sin(cos^{-1}(x)))$$
    $$=\dfrac{\pi}{2}-\beta$$
    Hence $$\alpha=\dfrac{\pi}{2}-\beta$$
    Hence $$tan(\alpha)=cot(\beta)$$
  • Question 6
    1 / -0
    Number of value $$x$$ satisfying the equation $$\displaystyle \sin^{-1} \left ( \frac{5}{x} \right ) + \sin^{-1} \left ( \frac{12}{x} \right ) = \frac{\pi}{2}$$ is
    Solution
    $$\sin^{-1}(\frac{5}{x})+\sin^{-1}(\frac{12}{x})=\frac{\pi}{2}$$
    $$\sin^{-1}(\frac{5}{x})=\frac{\pi}{2}-\sin^{-1}(\frac{12}{x})$$
    $$\sin^{-1}(\frac{5}{x})=\cos^{-1}(\frac{12}{x})$$
    $$\cos^{-1}(\frac{\sqrt{x^2-25}}{x})=\cos^{-1}(\frac{12}{x})$$
    $$x^2-25=144$$
    $$x^2=169$$
    $$x=\pm13$$
    However for -13, we wouldn't get $$\dfrac{-\pi}{2}$$ on the RHS.
    Hence there is only one solution, $$x=13$$
  • Question 7
    1 / -0
    There exists a positive real number $$x$$ satisfying $$\displaystyle \cos \left ( \tan^{-1} x \right ) = x$$. The value of $$\displaystyle \cos^{-1} \left ( \frac{x^{2}}{2} \right )$$ is
    Solution
    $$\cos(\tan^{-1}(x))=x$$
    $$\cos(\cos^{-1}(\frac{1}{\sqrt{1+x^{2}}}))=x$$
    Therefore
    $$\frac{1}{\sqrt{1+x^{2}}}=x$$
    Squaring on both the sides we get
    $$x^2(x^2+1)=1$$
    $$x^4+x^2-1=0$$
    Hence $$x^2=\frac{-1+\sqrt{5}}{2}$$
    $$\frac{x^2}{2}=\frac{\sqrt{5}-1}{4}$$
    $$\cos^{-1}(\frac{x^2}{2})$$ $$=\cos^{-1}(\frac{\sqrt{5}-1}{4})$$
    $$=72^{0}$$
    $$=\frac{2\pi}{5}$$
  • Question 8
    1 / -0
    The greatest and least values of $${ \left( \sin ^{ -1 }{ x }  \right)  }^{ 3 }+{ \left( \cos ^{ -1 }{ x }  \right)  }^{ 3 }$$ are
    Solution

  • Question 9
    1 / -0
    The value of $$\sin ^{ -1 }{ \left( \sin { 10 }  \right)  } $$ is

    Solution
    Here $$\theta =10 $$ rad doesnt lie between $$ -\dfrac \pi 2 $$ and$$ \dfrac \pi 2 $$ 

    But , $$ 3\pi -\theta $$ lies between $$ -\dfrac \pi 2 $$ and$$ \dfrac \pi 2 $$ 

    Also , $$ \sin (3\pi -10 )=\sin 10 $$ 

    $$\implies \sin ^ {-1} (\sin 10) =\sin ^ {-1} (\sin (3\pi -10))=3\pi -10 $$
  • Question 10
    1 / -0
    Which one of the following statement is meaningless?
    Solution
    The domain for $$f(x)=cos^{-1}(x)$$ is $$[-1,1]$$

    However, clearly $$ln \left(\dfrac{2e+4}{3}\right)>1$$

    Since $$f(x)$$ for $$|x|>1$$ is not possible.

    Option A is meaningless.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now