Self Studies

Inverse Trigonometric Functions Test - 27

Result Self Studies

Inverse Trigonometric Functions Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \:\sum_{i= 1}^{10}\cos^{-1}x_{i}= 0$$, then $$\displaystyle \:\sum_{i= 1}^{10}x_{i}$$  is
    Solution
    The above expression can be written as
    $$cos^{-1}(x_{1})+cos^{-1}(x_{2})+cos^{-1}(x_{3})+...cos^{-1}(x_{10})=0$$
    We know that $$cos^{-1}(1)=0$$
    Hence
    $$x_{1}=x_{2}=...=x_{10}=1$$
    Therefore
    $$x_{1}+x_{2}+...+x_{10}$$
    $$=1+1+1+1...+1$$
    $$=10(1)$$
    $$=10$$
  • Question 2
    1 / -0
    If $$\displaystyle \:\sum_{i= 1}^{2n}\sin^{-1}x_{i}= n\pi$$, then $$\displaystyle \:\sum_{i= 1}^{2n}x_{i}$$  is equal to
    Solution
    As $$\displaystyle -\frac { \pi  }{ 2 } \le \sin ^{ -1 }{ x } \le \frac { \pi  }{ 2 } $$

    Hence from question 
    $$\displaystyle \sin ^{ -1 }{ { x }_{ i } } =\frac { \pi  }{ 2 } $$ for all $$i$$

    $$\therefore { x }_{ i }=1$$ for all $$i$$

    $$\displaystyle \therefore \sum _{ i=1 }^{ 2n }{ { x }_{ i } } =2n$$
  • Question 3
    1 / -0
    If both $$\displaystyle \:\alpha, \beta $$ and $$\displaystyle \:6x^{2}+11x+3= 0$$ are real roots of the equation then
    Solution
    given, $$6x^2+11x+3=0$$

    $$6x^2+9x+2x+3=0$$

    $$3x(2x+3)+1(2x+3)=0$$

    $$(3x+1)(2x+3)=0$$

    Hence $$\alpha=\dfrac{-1}{3}$$ and $$\beta=\dfrac{-3}{2}$$

    Hence $$cot^{-1}(\alpha)$$ and $$cot^{-1}(\alpha)$$ are real, since $$cos^{-1}(\alpha)\in[-1,1]$$ and $$cosec^{-1}(\alpha)\notin[-1,1]$$.
  • Question 4
    1 / -0
    The range of the the function, $$f(x)=(\cot ^{-1}x+\sec ^{-1}x+cosec ^{-1}x)$$ is
    Solution
    Given,
    $$f(x)=(\cot ^{-1}x+\sec ^{-1}x+cosec ^{-1}x)$$

    Now,
    $$0<cot^{ -1 }x<\pi $$   ..(1)
    $$0\le { sec }^{ -1 }x<\dfrac { \pi  }{ 2 } $$ 
    and
    $$\dfrac { \pi  }{ 2 } <{ sec }^{ -1 }x\le \pi $$   ...(2)

    $$-\dfrac { \pi  }{ 2 } \le { cosec }^{ -1 }x<0$$ and $$0<{ cosec }^{ -1 }\le \dfrac { \pi  }{ 2 } $$  ..(3)

    Adding (1) , (2) and (3), we get
    $$\dfrac { \pi  }{ 2 } <cot^{ -1 }x+{ sec }^{ -1 }x+{ cosec }^{ -1 }x\le \dfrac { 3\pi  }{ 4 } $$ and $$\dfrac { 5\pi  }{ 4 } \le cot^{ -1 }x+{ sec }^{ -1 }x+{ cosec }^{ -1 }x<\dfrac { 3\pi  }{ 2 } $$

  • Question 5
    1 / -0
    If $$\displaystyle \:\cos ^{-1}x-\sin ^{-1}x= 0$$ , then $$x$$ is equal to
    Solution
    Given, $$\sin^{-1}(x)-\cos^{-1}(x)=0$$
    $$\sin^{-1}x+ \cos^{-1}x= \pi/2$$
    $$\dfrac{\pi}{2}=2\cos^{-1}(x)$$
    $$\cos^{-1}(x)=\frac{\pi}{4}$$
    $$x=\cos(\dfrac{\pi}{4})$$
    $$x=\dfrac{1}{\sqrt{2}}$$
  • Question 6
    1 / -0
    If $$\displaystyle \:\cos ^{-1}\lambda +\cos^{-1}\mu +\cos ^{-1}v= 3\pi $$ then $$\lambda \mu +\mu v+v\lambda $$ is equal to
    Solution
    Given, $$\cos^{-1}(\lambda)+\cos^{-1}(\mu)+\cos^{-1}(v)=3\pi$$
    Now we know that
    $$\cos^{-1}(x)\epsilon[0,\pi]$$
    Hence the above equation is only possible if 
    $$\cos^{-1}(\lambda)=\cos^{-1}(\mu)=\cos^{-1}(v)=\pi$$
    $$\lambda=\mu=v=\cos(\pi)$$
    $$=-1$$
    Hence, $$\lambda\mu+\mu v+\lambda v$$
    $$=3\lambda^{2}$$
    $$=3\mu^{2}$$
    $$=3v^{2}$$
    $$=3(-1)^{2}$$
    $$=3$$.
  • Question 7
    1 / -0
    If $$A=\cot ^{ -1 }{ \sqrt { \tan { \theta  }  }  } -\tan ^{ -1 }{ \sqrt { \tan { \theta  }  }  }$$, then $$\displaystyle \tan { \left( \frac { \pi  }{ 4 } -\frac { A }{ 2 }  \right)  } $$ is equal to 
    Solution
    Let $$\sqrt { \tan { \theta  }  } =\tan { \alpha  } $$
    $$\displaystyle \therefore A=\cot ^{ -1 }{ \left( \tan { \alpha  }  \right)  } -\tan ^{ -1 }{ \left( \tan { \alpha  }  \right)  } $$
    $$\displaystyle =\cot ^{ -1 }{ \left( \cot { \left( \frac { \pi  }{ 2 } -\alpha  \right)  }  \right)  } -\tan ^{ -1 }{ \left( \tan { \alpha  }  \right)  } $$
    $$\displaystyle =\frac { \pi  }{ 2 } -\alpha -\alpha =\frac { \pi  }{ 2 } -2\alpha $$
    $$\displaystyle \Rightarrow 2\alpha =\frac { \pi  }{ 2 } -A\Rightarrow \alpha =\frac { \pi  }{ 4 } -\frac { A }{ 2 } $$
    $$\displaystyle \therefore \sqrt { \tan { \theta  }  } =\tan { \alpha  } =\tan { \left( \frac { \pi  }{ 4 } -\frac { A }{ 2 }  \right)  } $$
  • Question 8
    1 / -0
    The principal value of $$\displaystyle \:\sin ^{-1}\left \{ \cos \left ( \sin ^{-1}\dfrac{\sqrt{3}}{2} \right ) \right \}$$ is
    Solution
    The principle value of $$\sin^{-1}(\cos(\sin^{-1}(\dfrac{\sqrt{3}}{2})))$$

    $$=\dfrac{\pi}{2}-\cos^{-1}(\cos(\sin^{-1}(\dfrac{\sqrt{3}}{2})))$$

    $$=\dfrac{\pi}{2}-\sin^{-1}(\dfrac{\sqrt{3}}{2})$$

    $$=\cos^{-1}(\dfrac{\sqrt{3}}{2})$$

    $$=\dfrac{\pi}{6}$$
  • Question 9
    1 / -0
    A function $$f(x)=\sqrt{1-2x}+x$$ is defined from $$D_{1}\rightarrow D_{2}$$ and is onto. If the set $$D_{1}$$ is its complete domain then the set $$D_{2}$$ is
    Solution
    We know, $$1-2x\geq0$$
    $$1\geq 2x$$
    $$x\leq \frac{1}{2}$$
    Hence domain is $$(-\infty,\frac{1}{2}]$$
    Now
    $$\frac{df(x)}{dx}$$
    $$=\frac{-1}{\sqrt{1-2x}}+1$$
    $$=0$$ for maxima minima.
    $$\sqrt{1-2x}=1$$
    $$1-2x=1$$
    $$\therefore x=0$$
    Hence $$f(0)=1$$ which is the maxima.
    Thus range is $$(-\infty,1]$$
  • Question 10
    1 / -0
    The set of values of $$x$$ for which $$\displaystyle \:\tan ^{-1}\frac{x}{\sqrt{1-x^{2}}}= \sin ^{-1}x$$ holds is
    Solution
    Since, x is the argument of inverse function of sin ,

    $$x \in (-1,1)$$                 $$[ x \neq \ ^{+}_{-}1$$, can be oberved from tan inverse function]

    Let $$\displaystyle x = sin(t)$$ for $$t \in (\dfrac{-\pi}{2}, \dfrac{\pi}{2})$$

    Then, we can rewrite the given equation as,

    $$tan^{-1}\dfrac{sint}{\sqrt{1-(sint)^2}} = sin^{-1}(sint)$$ 

    $$\rightarrow tan^{-1} tant = sin^{-1}sint$$

    Since $$t \in (\frac{-\pi}{2},\frac{\pi}{2})$$, Therefore, 

    $$tan^{-1}tant = t$$ and $$sin^{-1}sint = t$$

    $$\rightarrow t = t$$ which is always true.

    So, the given equation is true for every allowed value of x i.e, $$(-1,1).$$

    Thus, B is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now