Self Studies

Inverse Trigonometric Functions Test - 28

Result Self Studies

Inverse Trigonometric Functions Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \sin \:^{-1}\left ( x-\frac{x^{}}{2}+\frac{x^{3}}{4}-... \right )+\cos ^{-1}\left ( x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-... \right )=\frac{\pi }{2}$$ for $$\displaystyle  0<\left | x \right |<\sqrt{2}$$, then $$x$$ equals
    Solution
    $$\sin^{-1}(x-\frac{x}{2}+\frac{x^{2}}{4}-..\infty)+cos^{-1}(x^{2}-\frac{x^{4}}{2}+\frac{x^{3}}{6}+...\infty)$$

    $$=\sin^{-1}(x-[\dfrac{\dfrac{x}{2}}{1+\dfrac{x^{2}}{2}}])+cos^{-1}(\dfrac{x^{2}}{1+\dfrac{x^{2}}{2}})$$
    $$=\sin^{-1}(x-\dfrac{x}{x^{2}+2})+cos^{-1}(\dfrac{2x^{2}}{x^{2}+2})$$
    $$=\dfrac{\pi}{2}$$
    Therefore
    $$x-\dfrac{x}{x^{2}+2}=\dfrac{2x^{2}}{x^{2}+2}$$
    $$x^{3}+2x-x=2x^{2}$$
    $$x^{3}-2x^{2}+x=0$$
    $$x(x^{2}-2x+1)=0$$
    $$x((x-1)^{2})=0$$
    $$x=0$$ and $$x=1$$
    But $$|x|>0$$
    Hence
    $$x=1$$
  • Question 2
    1 / -0
    The value of $$\displaystyle sin^{-1}(cos(cos^{-1}(cos\:x)+sin^{-1}(sin\:x)))$$, where $$\displaystyle x\:\epsilon\:\left ( \frac{\pi}{2},\pi \right )$$, is equal to 
    Solution
    $$sin^{-1}[coscos^{-1}(cos(x)+sin^{-1}(sin(x))]$$
    $$=sin^{-1}[cos(x+\pi-x)]$$
    $$=sin^{-1}[cos(\pi)]]$$
    $$=sin^{-1}(-1)$$
    $$=\dfrac{-\pi}{2}$$
  • Question 3
    1 / -0
    $$\displaystyle \:\sin \cot ^{-1}\tan \cos ^{-1}x$$ is equal to
    Solution
    Given, $$\sin \cot^{-1}\tan(\cos^{-1}(x))$$
    $$=\sin \cot^{-1}\tan(\tan^{-1}(\frac{\sqrt{1-x^2}}{x}))$$
    $$=\sin \cot^{-1}(\frac{\sqrt{1-x^2}}{x})$$
    $$=\sin(\sin^{-1}(x))$$
    $$=x$$
  • Question 4
    1 / -0
     If $$\displaystyle \frac{1}{\sqrt{2}}< x< 1$$ then $$\displaystyle\cos ^{-1}x+\cos ^{-1}\left ( \frac{x+\sqrt{1-x^{2}}}{\sqrt{2}} \right )$$ is equal to 
    Solution
    $$cos^{-1}(x)+cos^{-1}(\dfrac{1}{\sqrt{2}}x+\dfrac{1}{\sqrt{2}}\sqrt{1-x^{2}})$$
    $$=cos^{-1}(x)+cos^{-1}(\dfrac{1}{\sqrt{2}})-cos^{-1}(x)$$
    $$=cos^{-1}(\dfrac{1}{\sqrt{2}})$$
    $$=\dfrac{\pi}{4}$$
  • Question 5
    1 / -0
    If $$\displaystyle \cos \:^{-1}x+\cos \:^{-1}y+\cos ^{-1}z=3\pi$$ then the value of $$xy+yz+zx$$ is
    Solution
    If  $$y=cos^{-1}(x)$$   $$ R\epsilon[\pi,0]$$ where$$ R$$ is the range of $$ y$$.

    Therefore in the above case, which is only possible if
    $$cos^{-1}(x)=cos^{-1}(y)=cos^{-1}(z)=\pi$$

    Hence
    $$x=y=z=-1$$

    Therefore $$xy+yz+zx$$
    $$=3 (-1)^2=3$$
  • Question 6
    1 / -0
    $$\displaystyle sec^{2}(tan^{-1}2)+cosec^{2}(cot^{-1}3)$$ is equal to 
    Solution
    Given, $$\sec^{2}(\tan^{-1}(2))+cosec^{2}(\cot^{-1}(3))$$
    $$=2+\tan^{2}(\tan^{-1}(2))+\cot^{2}(\cot^{-1}(3))$$
    $$=2+2^{2}+3^{2}$$
    $$=2+4+9$$
    $$=15$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( x \right ) = \sin^{-1}x + \sec^{-1} x$$ is defined, then which of the following value/values is/are in its range?
    Solution
    The domain for $$\sec^{-1}(x)$$ is $$(-\infty,-1]\cup[1,\infty)$$

    The domain for $$\sin^{-1}(x)$$ is $$[-1,1]$$

    Hence the domain for

    $$f(x)=\sin^{-1}(x)+\sec^{-1}(x)$$  will be

    $$-1$$ and $$1$$.

    Therefore the range of values of $$f(x)$$ will be

    $$f(-1)=\dfrac{-\pi}{2}+\pi$$

    $$=\dfrac{\pi}{2}$$

    $$f(1)=\dfrac{\pi}{2}+0$$ $$=\dfrac{\pi}{2}$$

    Hence the range of $$f(x)$$ includes a single element that is $$\dfrac{\pi}{2}$$
  • Question 8
    1 / -0
    The value of $$\displaystyle sin^{-1}\left[x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^{2}}\right]$$ is equal to
    Solution
    $$sin^{-1}(x\sqrt{1-x}-\sqrt{x}\sqrt{1-x^{2}})$$
    $$=sin^{-1}(x)-sin^{-1}(\sqrt{x})$$ ...( by applying the formula of $$sin^{-1}(x)-sin^{-1}(y)$$)
    Hence answer is Option B
  • Question 9
    1 / -0
    The number of integer $$x$$ satisfying $$\displaystyle sin^{-1}|x-2|+cos^{-1}(1-|3-x|)=\frac{\pi}{2}$$ is
    Solution
    If $$x<2$$
    $$sin^{-1}(2-x)+cos^{-1}(1-(3-x))$$
    $$=sin^{-1}(2-x)+cos^{-1}(-2+x)$$
    $$=sin^{-1}(2-x)+\pi-cos^{-1}(2-x)$$
    $$=\frac{\pi}{2}$$
    $$-\frac{pi}{2}+sin^{-1}(2-x)+\pi+sin^{-1}(2-x)=\frac{\pi}{2}$$
    $$2sin^{-1}(2-x)=0$$
    $$x=2$$ ...(i)
    For $$2<x<3$$
    $$sin^{-1}(x-2)+cos^{-1}(-2+x)$$
    $$=sin^{-1}(x-2)+cos^{-1}(x-2)$$
    $$=\frac{\pi}{2}$$
    For $$x>3$$
    $$sin^{-1}(x-2)+cos^{-1}(4-x)=\frac{\pi}{2}$$
    $$x-2=4-x$$
    $$2x=6$$
    $$x=3$$
    Hence there are in total 2, solutions.


  • Question 10
    1 / -0
    If $$x_{ 1 }=2\: tan^{ -1 }\left( \frac { 1+x }{ 1-x }  \right) ,x_{ 2 }=sin^{ -1 }\left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) $$, where $$x_1,x_2\:\epsilon\:(0,1)$$, then $$2\left( x_{ 1 }+x_{ 2 } \right) $$ is equal  to
    Solution
    $${ x }_{ 1 }=2\tan^{ -1 }\left( \cfrac { 1+x }{ 1-x }  \right) =\cos^{ -1 }\left( \cfrac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) \\ { x }_{ 2 }=\sin^{ -1 }\left( \cfrac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) $$
    Therefore,
    $${ x }_{ 1 }+{ x }_{ 2 }=\sin^{ -1 }\left( \cfrac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) +\cos^{ -1 }\left( \cfrac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right) =\cfrac { \pi  }{ 2 } \\ \Rightarrow 2\left( { x }_{ 1 }+{ x }_{ 2 } \right) =\pi $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now