Self Studies

Inverse Trigonometric Functions Test - 31

Result Self Studies

Inverse Trigonometric Functions Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sec^{-1}x+\tan^{-1}x$$ is real if $$\displaystyle x\epsilon \left ( -\infty ,-a \right ]\cup \left [ b,\infty  \right )$$.
    Find the value of $$a+b$$.

    Solution
    For $$\sec^{-1}x+\tan^{-1}x$$ to be real.

    $$|x|\geq1 \quad \quad \dots (sec^{-1}x=tan^{-1}\sqrt{x^2-1} \Rightarrow x^2-1\ge 0 \Rightarrow |x|\ge 1)$$

    $$\displaystyle \Rightarrow x\in \left ( -\infty ,-1 \right ]\cup \left [ 1,\infty  \right )$$

    Comparing with $$\displaystyle x\epsilon \left ( -\infty ,-a \right ]\cup \left [ b,\infty  \right )$$

    We get to know that, $$a=1$$ and $$b=1$$

    $$\therefore a+b=1+1=2$$
  • Question 2
    1 / -0
    If $$\cos^{-1}\lambda +\cos^{-1}\mu +\cos^{-1}\gamma =3\pi $$, then find the value of $$\lambda \mu +\mu \gamma +\gamma \lambda $$

    Solution
    We know that $$0\leq \cos^{-1}x\leq \pi $$
    Hence, from the question
    $$\cos^{-1}\lambda =\pi $$, $$\cos^{-1}\mu =\pi $$, $$\cos^{-1}\gamma =\pi $$
    [$$\because \cos^{-1}\lambda +\cos^{-1}\mu +\cos^{-1}\gamma =3\pi $$ is possible only when each term attains its maximum]
    $$\Rightarrow $$   $$\lambda =\mu =\gamma =-1$$   $$\Rightarrow $$   $$\lambda \mu +\mu \gamma +\gamma \lambda =3$$
  • Question 3
    1 / -0
    Find the value of $$x$$ for which;  $${cosec}^{-1} \left( \cos x \right)$$ is real
    Solution

    Given 

    Range of $$ \cos x $$ is $$[-1,1]$$ 

    Domain of $$ \csc ^ {-1} x $$ is $$R-(-1,1)$$ 

    Their intersection is $$ \{-1,1\}$$ 

    $$ \cos x $$ can be $$ \pm 1 $$ only when $$ x=n \pi $$ 

  • Question 4
    1 / -0
    Find the number of solutions of the equation $$\cos \left ( \cos^{-1}x \right )=cosec\:\left ( cosec^{-1}\:x \right )$$


    Solution
    $$\cos \left ( \cos^{-1}x \right )=x$$ for $$x\epsilon \left [ -1, 1 \right ]$$
    $$cosec\:\left ( cosec^{-1}\:x \right )=x$$ for $$c\epsilon \left (
    -\infty , -1  \right ]\cup \left [ 1, \infty  \right )$$
    $$\Rightarrow $$   $$\cos \left ( \cos^{-1}x \right )=cosec\:\left ( cosec^{-1}\:x \right )$$ for $$x=\pm 1$$ only.
    Hence, there are two roots only.
  • Question 5
    1 / -0
    Value of $$x$$ for which $$\displaystyle \cos^{-1}\left ( \frac{1-x^2}{1+x^2} \right )= 2\tan^{-1}x$$ satisfied is $$x\epsilon \left [ a,\infty  \right )$$.
    Find the value of $$a.$$

    Solution

    Given 

    $$ \cos ^{-1} \left( \dfrac {1-x^2}{1+x^2} \right) =2\tan ^{-1} x$$

    As $$ \cos ^{-1} \left( \dfrac{1-x^2}{1+x^2}\right) \in [0,\pi]$$

    then $$ 2\tan ^{-1} x \in [0,\pi]$$ 

    $$ \tan ^{-1} x \in \left[0,\dfrac \pi 2\right]$$ 

    $$ \implies x \in \left[0,\infty\right)$$ 

    So $$a=0$$

  • Question 6
    1 / -0
    If  the range for  $$y=\left ( \cot^{-1}x \right )\left ( \cot^{-1}\left ( -x \right ) \right )$$ is
    $$0< y\leq \cfrac{\pi ^{a}}{b}$$.
    Find the value of $$a+b$$

    Solution
    Given, $$y=\left ( \cot^{-1}x \right )\left ( \cot^{-1}\left ( -x \right ) \right )$$
                   $$=\cot^{-1}\left ( x \right )\left ( \pi -\cot^{-1}\left ( x \right ) \right )$$
    Now $$\cot^{-1}\left ( x \right )$$ and $$\left ( \pi -\cot^{-1}\left ( x \right ) \right )> 0$$
    Using A.M.$$\geq $$G.M., we get
    $$\displaystyle \frac{\cot^{-1}x+\left ( \pi
    -\cot^{-1}\left ( x \right ) \right )}{2}\geq \sqrt{\left ( \cot^{-1}x

    \right )\left ( \pi -\cot^{-1}\left ( x \right ) \right )}$$
    $$\Rightarrow

    $$   $$\displaystyle 0< \sqrt{\cot^{-1}\left ( x \right )\left ( \pi

    -\cot^{-1}\left ( x \right ) \right )}\leq \frac{\cot^{-1}x+\left ( \pi

    -\cot^{-1}\left ( x \right ) \right )}{2}=\frac{\pi }{2}$$
    $$\Rightarrow $$   $$0< y\leq \cfrac{\pi ^{2}}{4}$$
  • Question 7
    1 / -0
    Evaluate the following:
    i. $$\displaystyle \sin \left ( \cos^{-1}\frac{3}{5} \right )$$
    ii. $$\displaystyle \cos \left ( \tan^{-1}\frac{3}{4} \right )$$
    iii. $$\displaystyle \sin \left ( \frac{\pi }{2}-\sin^{-1}\left ( \frac{1}{2} \right ) \right )$$

    Solution
    i. Let $$\cos^{-1}3/5=\theta $$
       Then, $$\cos^{-1}3/5$$   $$\Rightarrow $$   $$\sin \theta =4/5$$
       $$\therefore $$   $$\sin \left ( \cos^{-1}3/5 \right )=\sin \theta =4/5$$

    ii. Let $$\tan^{-1}3/4=\theta $$
        Then, $$\tan \theta =3/5$$   $$\Rightarrow $$   $$\cos \theta =4/5$$          ($$\because $$  $$\displaystyle \cos ^{2}\theta =\frac{1}{1+\tan ^{2}\theta }$$)
        $$\therefore $$   $$\cos \left ( \tan^{-1}\left ( 3/4 \right ) \right )=\cos \theta =4/5$$

    iii.
    $$\displaystyle \sin \left ( \frac{\pi }{2}-\sin^{-1}\left (

    \frac{1}{2} \right ) \right )=\sin \left ( \frac{\pi }{2}-\left (

    -\frac{\pi }{6} \right ) \right )=\sin \frac{2\pi

    }{3}=\frac{\sqrt{3}}{2}$$
  • Question 8
    1 / -0
    Find the value of $$\displaystyle \sin^{-1}x+\sin^{-1}\frac{1}{x}+\cos^{-1}x+\cos^{-1}\frac{1}{x}$$
    Solution
    The value of $$\displaystyle

    \sin^{-1}x+\sin^{-1}\frac{1}{x}+\cos^{-1}x+\cos^{-1}\frac{1}{x}$$ is defined only when $$\displaystyle x, \frac{1}{x}\epsilon \left [ -1, 1

    \right ]$$

    which is possible only when $$x=\pm 1$$

    For which $$\displaystyle \sin^{-1}x+\sin^{-1}\frac{1}{x}+\cos^{-1}x+\cos^{-1}\frac{1}{x}=\pi $$
  • Question 9
    1 / -0
    If the range of $$f\left ( x \right )=\sin^{-1}x+\tan^{-1}x+\cos^{-1}x$$ is
    $$\displaystyle =\left [ \frac{\pi }{a}, \frac{b\pi }{c} \right ]$$,
    Find the value of $$a+b+c$$
    Solution
    Clearly, the domain of the function is $$[-1, 1]$$.
    Also, $$\displaystyle

    \tan^{-1}x\in \left [ -\frac{\pi }{4}, \frac{\pi }{4} \right ]$$ For $$x\in \left [ -1, 1 \right ]$$
    Now, $$\displaystyle \sin^{-1}x+\cos^{-1}x=\frac{\pi }{2}$$for $$x\in \left [ -1, 1 \right ]$$
    Thus, $$f\left ( x \right )=\tan^{-1}x+\dfrac{\pi }{2}$$, where $$x\in \left [ -1, 1 \right ]$$
    Hence, the range is $$\displaystyle \left [ -\frac{\pi }{4}+\frac{\pi }{2}, \frac{\pi }{4}+\frac{\pi }{2} \right ]=\left [ \frac{\pi }{4}, \frac{3\pi }{4} \right ]$$
  • Question 10
    1 / -0
    If $$\cos^{-1}x=\left\{\begin{matrix}
    a\pi -b\cos^{-1}\left ( 2x^{2}-1 \right ), if\:-1\leq x< 0\\
    c\cos^{-1}\left ( 2x^{2}-1 \right ), if\:0\leq x\leq  1
    \end{matrix}\right.$$.
    Find the value of $$a+b+c$$.
    Solution
    Let $$\cos^{-1}x=\theta $$, where $$\theta \epsilon \left [ 0, \pi  \right ]$$   or   $$\cos \theta =x$$

    Now,

    $$\cos^{-1}\left ( 2x^{2}-1 \right )=\cos^{-1}\left ( 2\cos ^{2}\theta

    -1 \right )=\cos^{-1}\left ( \cos 2\theta  \right )=\cos^{-1}\left (

    \cos \theta  \right )$$, where $$\alpha \epsilon \left [ 0, 2\pi  \right

    ]$$

    Refer to the graph of $$y=\cos^{-1}\left ( \cos \alpha  \right )$$, $$\alpha \epsilon \left [ 0, 2\pi  \right ]$$

    From the graph, we have
    $$\cos^{-1}\left ( 2x^{2}-1 \right )=\left\{\begin{matrix}
    \alpha , if\:0\leq \alpha < \pi \\
    2\pi -\alpha , if\:\pi \leq \alpha \leq 2\pi
    \end{matrix}\right.$$

         $$=\left\{\begin{matrix}
    2\cos^{-1}x , if\:0\leq 2\cos^{-1}x\leq \pi \\
    2\pi -\cos^{-1}x, if\:\pi < 2\cos^{-1}x\leq 2\pi
    \end{matrix}\right.$$

         $$=\left\{\begin{matrix}
    2\cos^{-1}x , if\:0\leq \cos^{-1}x\leq \left ( \pi /2 \right )\\
    2\pi -\cos^{-1}x, if\:\left ( \pi /2 \right )< \cos^{-1}x\leq \pi
    \end{matrix}\right.$$

         $$=\left\{\begin{matrix}
    2\cos^{-1}x , if\:0\leq x\leq 1\\
    2\pi -\cos^{-1}x, if\:-1\leq x< 0
    \end{matrix}\right.$$

    $$\Rightarrow $$   $$2\cos^{-1}x=\left\{\begin{matrix}
    2\pi -\cos^{-1}\left ( 2x^{2}-1 \right ), if\:-1\leq x< 0\\
    \cos^{-1}\left ( 2x^{2}-1 \right ), if\:0\leq x\leq  1
    \end{matrix}\right.$$

    $$a=2,b=1,c=1$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now