Let $$\cos^{-1}x=\theta $$, where $$\theta \epsilon \left [ 0, \pi \right ]$$ or $$\cos \theta =x$$
Now,
$$\cos^{-1}\left ( 2x^{2}-1 \right )=\cos^{-1}\left ( 2\cos ^{2}\theta
-1 \right )=\cos^{-1}\left ( \cos 2\theta \right )=\cos^{-1}\left (
\cos \theta \right )$$, where $$\alpha \epsilon \left [ 0, 2\pi \right
]$$
Refer to the graph of $$y=\cos^{-1}\left ( \cos \alpha \right )$$, $$\alpha \epsilon \left [ 0, 2\pi \right ]$$
From the graph, we have
$$\cos^{-1}\left ( 2x^{2}-1 \right )=\left\{\begin{matrix}
\alpha , if\:0\leq \alpha < \pi \\
2\pi -\alpha , if\:\pi \leq \alpha \leq 2\pi
\end{matrix}\right.$$
$$=\left\{\begin{matrix}
2\cos^{-1}x , if\:0\leq 2\cos^{-1}x\leq \pi \\
2\pi -\cos^{-1}x, if\:\pi < 2\cos^{-1}x\leq 2\pi
\end{matrix}\right.$$
$$=\left\{\begin{matrix}
2\cos^{-1}x , if\:0\leq \cos^{-1}x\leq \left ( \pi /2 \right )\\
2\pi -\cos^{-1}x, if\:\left ( \pi /2 \right )< \cos^{-1}x\leq \pi
\end{matrix}\right.$$
$$=\left\{\begin{matrix}
2\cos^{-1}x , if\:0\leq x\leq 1\\
2\pi -\cos^{-1}x, if\:-1\leq x< 0
\end{matrix}\right.$$
$$\Rightarrow $$ $$2\cos^{-1}x=\left\{\begin{matrix}
2\pi -\cos^{-1}\left ( 2x^{2}-1 \right ), if\:-1\leq x< 0\\
\cos^{-1}\left ( 2x^{2}-1 \right ), if\:0\leq x\leq 1
\end{matrix}\right.$$
$$a=2,b=1,c=1$$