Self Studies

Inverse Trigonometric Functions Test - 32

Result Self Studies

Inverse Trigonometric Functions Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Number of solutions of the equation $$ \sin \left ( \displaystyle \frac{1}{3}\cos^{-1}x \right )=1 $$ are
    Solution
    $$\displaystyle \sin \left ( \frac{1}{3}\cos ^{-1}x \right )=1$$
    $$\displaystyle \Rightarrow \frac { 1 }{ 3 } \cos ^{ -1 } x=\frac { \pi  }{ 2 } $$
    $$\displaystyle \Rightarrow \cos ^{-1}x=\frac{3\pi }{2}$$
    $$\displaystyle \Rightarrow \exists $$ no solution, as $$\displaystyle x \epsilon \left [ 0,\pi  \right ]$$
  • Question 2
    1 / -0
    If value of $$x$$ which satisfy equation $$\displaystyle \sin^{-1}\frac{2x}{1+x^{2}}=\tan^{-1}\frac{2x}{1-x^{2}}$$, is $$-a< x< b$$.
    Find the value of $$a+b$$


    Solution
    We know, $$-1\leq \dfrac{2x}{1+x^{2}}\leq 1$$

    Now, $$-(1+x^{2})\leq 2x$$

    $$1+x^{2}+2x\geq 0$$

    $$(1+x)^{2}\geq 0$$

    $$1+x\geq 0$$

    $$x\geq-1$$ ...(i)

    And $$\dfrac{2x}{1+x^{2}}\leq 1$$

    $$0\leq 1+x^{2}-2x$$

    $$0\leq (1-x)^{2}$$

    $$0\leq 1-x$$

    $$x\leq 1$$

    Hence, $$-1\leq x\leq 1$$.

    Hence, $$a=-1$$ and $$b=1$$

    $$\therefore a+b=0$$
  • Question 3
    1 / -0
    If $$\displaystyle \sin ^{-1}x-\sin ^{-1}y= \frac{\pi }{2}$$ ,then
    Solution
    $$\sin ^{ -1 }{ x } -\sin ^{ -1 }{ y } =\frac { \pi  }{ 2 } \\ \Rightarrow \sin ^{ -1 }{ y } =-\left( \frac { \pi  }{ 2 } -\sin ^{ -1 }{ x }  \right) \\ \Rightarrow \sin { \sin ^{ -1 }{ y }  } =-\sin { \left( \frac { \pi  }{ 2 } -\sin ^{ -1 }{ x }  \right)  } \\ \Rightarrow y=-\cos { \sin ^{ -1 }{ x }  } =-\cos { \cos ^{ -1 }{ \sqrt { 1-{ x }^{ 2 } }  }  } $$

    $$for\quad 0\le x\le 1$$
    $$y=-\sqrt { 1-{ x }^{ 2 } } $$
    $$\Rightarrow -1\le y\le 0$$

    Ans: B
  • Question 4
    1 / -0
    $$\displaystyle \sin ^{-1}\left ( a-\frac{a^{2}}{3}+\frac{a^{3}}{9}\cdots \infty  \right )+\cos ^{-1}\left ( 1+b+b^{2}+b^{3}+\cdots \infty  \right )= \frac{\pi }{2}$$ , when
    Solution
    $$a-\dfrac{a^{2}}{3}+\dfrac{a^{3}}{9}...\infty $$ is an infinite G.P with a common ration of $$\dfrac{-a}{3}$$.

    Hence
    $$S_{a}=\dfrac{a}{1+\dfrac{a}{3}}$$ $$=\dfrac{3a}{a+3}$$ ...(i)

    Similarly $$S_{b}=1+b+b^{2}...\infty$$.

    $$S_{b}=\dfrac{1}{1-b}$$ ...(ii)

    Now $$sin^{-1}(A)+cos^{-1}(B)=\dfrac{\pi}{2}$$ implies $$A=B$$, then

    $$i=ii$$
     
    $$\dfrac{3a}{a+3}=\dfrac{1}{1-b}$$
     
    $$3a-3ab=a+3$$
     
    $$2a-3ab=3$$
     
    $$2a-3=3ab$$
     
    $$b=\dfrac{2a-3}{3a}$$

    Substituting $$b=\dfrac{1}{2}$$, we get 

    $$\dfrac{3a}{2}-2a=-3$$
     
    $$\dfrac{a}{2}=3$$
     
    $$a=6$$.

    However $$|a|<1$$ and $$|b|<1$$ for the above infinite G.P.

    Hence answer is none of the above.
  • Question 5
    1 / -0
    The number of solutions of the equation  $$ 2\sin^{-1}\left ( \sqrt{x^{2}-x+1} \right )+\cos^{-1}\left ( \sqrt{x^{2}-x} \right )= \displaystyle \frac{3\pi }{2} $$ is
    Solution
    The maximum value of the function is obtained when the value of $$\sqrt {x^2-x+1}$$ is equal to $$1$$
    and value of $$\sqrt {x^2-x}$$ is equal to $$0$$

    $$\displaystyle \sin ^{-1}\sqrt{x}, \cos ^{-1}\sqrt{x}$$ are defined for $$\displaystyle x\leq 1$$ and $$\displaystyle x\geq  0$$
    $$\displaystyle \therefore \sqrt{x^{2}-x+1}\leq 1$$ and $$\displaystyle  \sqrt{x^{2}-x}\geq  0$$
    $$\displaystyle \Rightarrow x^{2}-x\leq 0$$ and $$\displaystyle x^{2}-x\geq 0$$

    Thus, reducing the equation to

    $$\displaystyle \Rightarrow x^{2}-x=0$$
    $$\displaystyle \Rightarrow x=1, 0$$
    $$\displaystyle \therefore $$ there are two solutions, both satisfies the equation.
  • Question 6
    1 / -0
    The equation $$\sin ^{-1}x=2\sin ^{-1}a$$ , has a solution for
    Solution
    Given equation $$\sin ^{-1}x= 2\sin ^{-1}a$$

    $$\displaystyle \Rightarrow -\frac{\pi}{2}\leq 2\sin ^{-1}a\leq \frac{\pi}{2}\left \{ \because \sin ^{-1}x= 2\sin ^{-1}a \:and -\frac{\pi}{2}\leq 2\sin ^{-1}x\leq \frac{\pi}{2} \right\}$$

    $$\displaystyle \Rightarrow -\frac{\pi}{4}\leq \sin ^{-1}a\leq \frac{\pi}{4}$$

    $$\displaystyle \Rightarrow \sin \left (  -\frac{\pi}{4}\right )\leq a\leq \sin \left ( \frac{\pi}{4} \right )$$

    $$\displaystyle \Rightarrow  -\frac{1}{\sqrt{2}}\leq a\leq  \frac{1}{\sqrt{2}}$$
  • Question 7
    1 / -0
    Let $$f(x) =e^{\displaystyle\cos^{-1}\sin \left ( x+\displaystyle\frac{\pi }{3} \right )}$$, then $$f\left (\displaystyle \frac{8\pi }{9} \right )$$  equals
    Solution
    $$f(x)=e^{\cos ^{-1}\sin\left ( x+\displaystyle \frac{\pi }{3} \right )}$$
    $$\therefore f\left (\displaystyle \frac{8\pi }{9} \right )$$
    $$f(x)=e^{\cos ^{-1}\sin\left ( \dfrac{\pi}{3}+\displaystyle \frac{8\pi }{9} \right )}$$
    $$=e^{\cos ^{-1}\sin\left ( \displaystyle \frac{11\pi }{9} \right )}$$
    $$=e^{\cos ^{-1}\sin\left ( \displaystyle \frac{22\pi }{18} \right )}$$
    $$=e^{\cos ^{-1}\sin\left ( \displaystyle \frac{9\pi }{18}+\displaystyle \frac{13\pi }{18} \right )}$$
    $$=e^{\cos ^{-1}\sin\left (\displaystyle \frac{\pi }{2}+\displaystyle \frac{13\pi }{18}  \right )}$$
    $$=e^{\cos ^{-1}\cos\left (\displaystyle \frac{13\pi }{18} \right )}$$
    $$=e^{\displaystyle \frac{13\pi }{18}}$$ 
  • Question 8
    1 / -0
    If $$\displaystyle \cot ^{-1}\left [ \left ( \cos \alpha  \right )^{1/2} \right ]+\left [ \tan ^{-1}\left ( \cos \alpha  \right )^{1/2} \right ]=x$$ , then $$\sin x$$ equals 
    Solution
    As $${ \tan }^{ -1 }\theta +{ \cot }^{ -1 }\theta =\cfrac { \pi  }{ 2 } $$
    $$\therefore x=\cfrac { \pi  }{ 2 } $$
    Hence,
    $$\sin x=\sin\cfrac { \pi  }{ 2 } =1$$

  • Question 9
    1 / -0
    The domain of $$\sin ^{-1}[x]$$, where $$[x]$$ is greatest integer function, given by
    Solution
    Domain of $$\sin^{-1}(x)$$ is $$[-1,1]$$

    Now $$[x]$$ is greatest integer function, lesser than or equal to $$x.$$

    Hence
    $$-1\leq [x]\leq 1$$

    Hence
    $$x\in[-1,2)$$
  • Question 10
    1 / -0
    If $$\cos^{-1}x+\cos^{-1}y+\cos^{-1}z= 3\pi $$, then value of $$\displaystyle \sum xy$$ equals
    Solution
    As $$0\le cos^{ -1 }\theta \le \pi $$
    For $$cos^{ -1 }x+cos^{ -1 }y+cos^{ -1 }z=3\pi $$ this to true
    $$\Rightarrow cos^{ -1 }x=cos^{ -1 }y=cos^{ -1 }z=\pi \\ \Rightarrow x=y=z=-1\\ \therefore \sum { xy } =xy+yz+zx=(-1)^2+(-1)^2+(-1)^2=3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now