Self Studies

Inverse Trigonometric Functions Test - 34

Result Self Studies

Inverse Trigonometric Functions Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$2\sinh ^{ -1 }{ \left( \dfrac { a }{ \sqrt { 1-{ a }^{ 2 } }  }  \right)  } =\log { \left( \dfrac { 1+x }{ 1-x }  \right)  }$$, then $$x=$$
    Solution
    As we know that
    $$\sinh^{-1} x=\log(x+\sqrt{x^2+1})$$
    $$2\sinh^{-1} \bigg(\dfrac{a}{\sqrt{1-a^2}}\bigg)=2\log\bigg(\dfrac{a}{\sqrt{1-a^2}}+\sqrt{\dfrac{a^2}{1-a^2}+1}\bigg)$$
                                            $$=2\log \bigg(\dfrac{a+\sqrt{a^2+1-a^2}}{\sqrt{1-a^2}}\bigg)$$
                                             $$=2\log \bigg(\dfrac{a+1}{\sqrt{1-a^2}}\bigg)$$
                                             $$=\log\bigg(\dfrac{(1+a)^2}{(1-a)(1+a)}\bigg)$$
                                             $$=\log \bigg(\dfrac{1+a}{1-a}\bigg)$$
    But given $$2\sinh^{-1} \bigg(\dfrac{a}{\sqrt{1-a^2}}\bigg)=\log \bigg(\dfrac{1+x}{1-x}\bigg)$$
    So $$x=a$$
  • Question 2
    1 / -0
    The value of $$\cos^{-1} (-1) - \sin^{-1} (1)$$ is
    Solution
    $$E = \pi - cos^{-1} (1) - sin^{-1} (1) = \pi - \dfrac{\pi}{2} = \dfrac{\pi}{2}$$

    $$\because cos^{-1} (-x) = \pi - cos^{-1} x$$

    and $$cos^{-1} x + sin^{-1} x = \dfrac{\pi}{2}$$
  • Question 3
    1 / -0
    Range of the function $$f(x)=4{ tan }^{ -1 }x+3{ sin }^{ -1 }x+{ sec }^{ -1 }x$$ is
    Solution

  • Question 4
    1 / -0
    If $$\sin \left( \sin^{-1} \dfrac{1}{5} +  \cos^{-1} x \right) = 1$$, then x is equal to
    Solution
    $$\sin\left(\sin^{-1}\dfrac{1}{5}+\cos^{-1}x\right)=1...........(1)$$
    $$\because \sin\dfrac{\pi }{2}=1$$
    $$\therefore \sin^{-1}\dfrac{1}{5}+\cos^{-1}x=\dfrac{\pi }{2}........$$ from $$(1)$$
    $$\therefore \cos^{-1}x =\dfrac{\pi }{2}- \sin^{-1}\dfrac{1}{5}$$
    $$\therefore \cos^{-1}x= \cos^{-1}\dfrac{1}{5}......\left(\dfrac{\pi }{2}- \sin^{-1}x= \cos^{-1}x\right)$$
    $$\therefore x=\dfrac{1}{5}$$
  • Question 5
    1 / -0
    Number of solution of the equation $$\cos^{-1}(1-x)-2\cos^{-1}x=\dfrac{\pi}{2}$$ is 
    Solution

  • Question 6
    1 / -0
    If $$\sin ^{ -1 }{ \left( x-\displaystyle\frac { { x }^{ 2 } }{ 2 } +\displaystyle\frac { { x }^{ 3 } }{ 4 } -....\infty  \right)  } +\cos ^{ -1 }{ \left( { x }^{ 2 }-\displaystyle\frac { { x }^{ 4 } }{ 2 } +\displaystyle\frac { { x }^{ 6 } }{ 4 } -....\infty  \right)  } =\displaystyle\frac { \pi  }{ 2 } $$ and $$0<x<\sqrt { 2 } $$ then $$x$$ =
    Solution
    $$x-\displaystyle\frac { { x }^{ 2 } }{ 2 } +\displaystyle\frac { { x }^{ 3 } }{ 4 } -....\infty $$ = $${ x }^{ 2 }-\displaystyle\frac { { x }^{ 4 } }{ 2 } +\displaystyle\frac { { x }^{ 6 } }{ 4 } -....\infty $$
    $$\quad x={ x }^{ 2 }\Rightarrow x=1$$
  • Question 7
    1 / -0
    If $$ a sin^{-1} x -b cos^{-1}x =c$$, then the value of $$ a sin ^{-1} x + b cos^{-1} x$$ (whenever exists) is equal to
    Solution
    As we know that
    $$\sin^{-1} x+\cos^{-1} x=\dfrac{\pi}{2}$$

    Given $$a\sin^{-1} x-b\cos^{-1} x=c$$

    $$\implies a\sin^{-1} x-b(\frac{\pi}{2}-\sin^{-1} x)=c$$

    $$\implies (a+b)\sin^{-1} x=c+\dfrac{b\pi}{2}$$

    $$\implies \sin^{-1} x=\dfrac{2 c+b\pi}{2(a+b)}$$

    $$a\sin^{-1} x+b\cos^{-1} x=a\sin^{-1} x+b(\frac{\pi}{2}-\sin^{-1} x)$$

                                          $$=(a-b)\sin^{-1} x+b\dfrac{\pi}{2}$$

                                          $$=\dfrac{(a-b)(2 c+b\pi)}{2(a+b)}+\dfrac{b\pi}{2}$$

                                          $$=\dfrac{2 c(a-b)+b\pi(a-b+a+b)}{2(a+b)}$$

                                          $$=\dfrac{c(a-b)+a b \pi}{(a+b)}$$
  • Question 8
    1 / -0
    The set of values of $$'x'$$ for which the formula $$2 \sin^{-1}x=\sin^{-1} (2x\sqrt{1-x^{2}})$$ is true, is
    Solution

    Consider the given equation,

    $$2{{\sin }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)$$


    Put, $$x=\sin \theta \,\,\Rightarrow \theta ={{\sin }^{-1}}x$$

    $$ 2{{\sin }^{-1}}\sin \theta ={{\sin }^{-1}}\left( 2\sin \theta \sqrt{1-{{\sin }^{2}}\theta } \right) $$

    $$ 2\theta ={{\sin }^{-1}}\left( 2\sin \theta \sqrt{{{\cos }^{2}}\theta } \right)\,\,\,\,\,\,\,\,\left( \because \,{{\sin }^{2}}A+{{\cos }^{2}} \right) $$

    $$ 2\theta ={{\sin }^{-1}}\left( 2\sin \theta \cos \theta  \right)\,\, $$

    $$ 2\theta ={{\sin }^{-1}}\sin 2\theta  $$

    $$ 2\theta =2\theta \,\,\,\,\,\, $$

    $$\sin x=\sin x$$

     

    Now,

    $$ \because \,-1\le\sin \ x\ge1 $$

    $$ \therefore \,\,-\dfrac{\pi }{2}\le\ x \ge\dfrac{\pi }{2} $$

    $$ x \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] $$


    Hence, this is the answer.

  • Question 9
    1 / -0
    If $$x=\cos^{ - 1}\left( \dfrac{2}{3} \right) + \tan^{ - 1}\left( \dfrac{1}{7} \right)$$ then $$x$$=
    Solution

    We have,

    $${{\cos }^{-1}}\dfrac{2}{3}+{{\tan }^{-1}}\dfrac{1}{7}$$

     We know that,

    $${{\tan }^{-1}}x={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{1+{{x}^{2}}}} \right)$$

     Therefore,

    $$ ={{\cos }^{-1}}\dfrac{2}{3}+{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{1+{{\left( \dfrac{1}{7} \right)}^{2}}}} \right) $$

    $$ ={{\cos }^{-1}}\dfrac{2}{3}+{{\cos }^{-1}}\left( \dfrac{7}{\sqrt{50}} \right) $$

     We know that,

    $${{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left\{ xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right\}$$

     Therefore,

    $$ ={{\cos }^{-1}}\left\{ \dfrac{2}{3}\times \dfrac{7}{\sqrt{50}}-\sqrt{1-{{\left( \dfrac{2}{3} \right)}^{2}}}\sqrt{1-{{\left( \dfrac{7}{\sqrt{50}} \right)}^{2}}} \right\} $$

    $$ ={{\cos }^{-1}}\left\{ \dfrac{14}{3\sqrt{50}}-\sqrt{\dfrac{5}{9}}\sqrt{\dfrac{1}{50}} \right\} $$

    $$ ={{\cos }^{-1}}\left\{ \dfrac{14}{3\sqrt{50}}-\dfrac{\sqrt{5}}{3\sqrt{50}} \right\} $$

    $$ ={{\cos }^{-1}}\left\{ \dfrac{14-\sqrt{5}}{3\sqrt{50}} \right\} $$

     Hence, this is the answer.

  • Question 10
    1 / -0
    The  set for which $$2{\cos ^{ - 1}}x = {\cos ^{ - 1}}\left( {2{x^2} - 1} \right)$$ is valid is

    Solution
    $$2\cos ^{-1}x =\cos^{-1} (2x^2 -1)$$
    Range of $$\cos^{-1}f(x)$$ is $$[0, \pi]$$

    $$0\le\cos^{-1}f(x)\le \pi$$
    $$0\le\cos^{-1}(2x^2-1)\le\pi$$
    $$0\le 2\cos^{-1}{x}\le\pi$$
    then $$0 \le \cos^{-1}x < \dfrac {\pi}{2}$$
    $$x \in [0, 1]$$
    $$D$$ is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now