Self Studies

Inverse Trigonometric Functions Test - 35

Result Self Studies

Inverse Trigonometric Functions Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\tan \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7} \right) \right] + \cot \left[\dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} \left(\dfrac{5}{7}\right) \right]$$ is equal to 
    Solution
    $$\tan\left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ]+\cot \left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ] $$

    $$=\tan\left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ]+\tan \left [ \dfrac{\pi}{4}-\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ] $$

    We are using the formula:
    $$\tan \left [ \dfrac{\pi}{4}+\dfrac{x}{2} \right ]+\tan \left [ \dfrac{\pi}{4}-\dfrac{x}{2} \right ]=\dfrac{2}{\cos x}, x=\cos^{-1}\dfrac{a}{b}$$

    $$\tan \left [ \dfrac{\pi}{4}+\dfrac{x}{2} \right ]+\tan \left [ \dfrac{\pi}{4}-\dfrac{x}{2} \right ]=\dfrac{2b}{a}$$

    $$\therefore \tan\left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ]+\cot \left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ]  =\dfrac{2\times 7}{5}$$

    $$\Rightarrow \therefore \tan\left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ]+\cot \left [ \dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}\left ( \dfrac{5}{7} \right ) \right ] = \dfrac{14}{5}$$
  • Question 2
    1 / -0
    $$\tan ^{ -1 }{ \sqrt { 3 }  } -\cot ^{ -1 }{ \left( -\sqrt { 3 }  \right)  } $$ is equal to
    Solution
    $$\tan^-1 \sqrt {3}=\dfrac{\pi}{3}$$
    and
    $$\cot^-1(-\sqrt{3})=\left(\pi-\dfrac{\pi}{6}\right)=\dfrac{5\pi}{6}$$
    $$\therefore$$ $$\dfrac{\pi}{3}-\dfrac{5\pi}{6}=\dfrac{-3\pi}{6}=\dfrac{-\pi}{2}$$




























  • Question 3
    1 / -0
    $${\cos ^{ - 1}}\left\{ {\dfrac{1}{{\sqrt 2 }}\left( {\cos \dfrac{{9\pi }}{{10}} - \sin \dfrac{{9\pi }}{{10}}} \right)} \right\} = $$
    Solution
    $$\displaystyle \cos^{-1}\left \{ \frac{1}{\sqrt{2}}\left ( \cos\frac{9\pi }{10}-\sin\frac{9\pi }{10} \right ) \right \}$$

    $$\displaystyle =\cos^{-1}\left \{ \left ( \frac{1}{\sqrt{2}} \cos \frac{9\pi }{10}-\frac{1}{\sqrt{2}} \sin\frac{9\pi }{10} \right ) \right \}$$

    $$\displaystyle = \cos^{-1}\left \{ \cos\left ( \frac{\pi }{4}+\frac{9\pi }{10} \right ) \right \}$$ 

    $$\displaystyle =\cos^{-1}\left \{ \cos\left ( \frac{23\pi }{20} \right ) \right \}$$ 

    $$=\dfrac{23\pi }{20}$$
  • Question 4
    1 / -0
    If $${ x }_{ 1 },{ x }_{ 2},{ x }_{ 3}$$ are positive roots of $$ x^{ 3 }-6x^{ 2 }+3px-2p=0\quad (p\in R)$$, then the value of $$\sin ^{ -1 } \left( \frac { 1 }{ { x }_{ 1 } } +\frac { 1 }{ { x }_{ 2 } }  \right) +\cos ^{ -1 }{ \left( \frac { 1 }{ { x }_{ 2 } } +\frac { 1 }{ { x }_{ 3 } }  \right)  } -\tan ^{ -1 }{ \left( \frac { 1 }{ { x }_{ 3 } } +\frac { 1 }{ { x }_{ 1 } }  \right)  } $$ is equal to
    Solution
    $$x^3-6x^2+3px-2p=0$$
    $$x_1$$
    $$x_2$$
    $$x_3$$
    are the zeros
    $$x_1+x_2+x_3=6$$
    $$x_1x_2+x_2x_3+x_3x_1=3p$$         $$\left[\because \dfrac{x_1+x_2+x_3}{3}\geq (2p)^{\dfrac{1}{3}}, 2\geq (2p)^{\dfrac{1}{3}}\Rightarrow p\leq 4\right]$$
    $$x_1x_2x_3=2p$$
    $$\dfrac{3p}{3}\geq ((x_1x_2x_3)^2)^{1/3}$$
    $$p^3\geq 4p^2$$
    $$p\geq 4$$
    $$\Rightarrow p=4$$
    $$\therefore x_1x_2+x_2x_3+x_3x_1=12$$
    $$x_1x_2x_3=8$$
    $$x_1+x_2+x_3=6$$
    $$\sin^{-1}(1)+\cos^{-1}(1)-\tan^{-1}(1)$$
    $$\dfrac{\pi}{2}+0-\dfrac{\pi}{4}=\dfrac{\pi}{4}$$.
  • Question 5
    1 / -0
    If $$\tan{\alpha}=\dfrac{m}{m+1}$$ and $$\tan{\beta}=\dfrac{1}{2m+1}$$ find the possible values of $$(\alpha+\beta)$$
    Solution

    Given that $$\tan \alpha =\dfrac{m}{m+1}$$    …….   (1)  and  $$\tan \beta =\dfrac{1}{2m+1}$$    ……..   (2)

    Find $$\alpha +\beta =?$$

    We know that,

    $$\tan \left( \alpha +\beta  \right)=\dfrac{\tan \alpha +\tan \beta }{1-\tan \alpha \tan \beta }$$

    Put the value of  $$\tan \alpha $$ and $$\tan \beta $$

    $$ \tan \left( \alpha +\beta  \right)=\dfrac{\dfrac{m}{m+1}+\dfrac{1}{2m+1}}{1-\dfrac{m}{m+1}\dfrac{1}{2m+1}} $$

     $$ \Rightarrow \tan \left( \alpha +\beta  \right)=\dfrac{\dfrac{m\left( 2m+1 \right)+m+1}{\left( m+1 \right)\left( 2m+1 \right)}}{\dfrac{\left( m+1 \right)\left( 2m+1 \right)-m}{\left( m+1 \right)\left( 2m+1 \right)}} $$

     $$ \Rightarrow \tan \left( \alpha +\beta  \right)=\dfrac{2{{m}^{2}}+m+m+1}{2{{m}^{2}}+2m+m+1-m} $$

     $$ \Rightarrow \tan \left( \alpha +\beta  \right)=\dfrac{2{{m}^{2}}+m+m+1}{2{{m}^{2}}+m+m+1} $$

     $$ \Rightarrow \tan \left( \alpha +\beta  \right)=1 $$

     $$ \Rightarrow \tan \left( \alpha +\beta  \right)=\tan {{45}^{0}} $$

     $$ \Rightarrow \alpha +\beta ={{45}^{0}} $$

    Hence, this is the answer

  • Question 6
    1 / -0
    $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {\dfrac{{2r}}{{1 - {r^2} + {r^4}}}} \right)} $$ is equal to 
    Solution
    $$\lim {n\to \infty } \sum _{ r=1 }^{ n }{ \tan ^{ -1 }{ \left(\dfrac { 2r }{ 1-{ r }^{ 2 }+{ r }^{ 4 } }  \right)}  } $$

    $$=\lim {n\to \infty} \sum _{ r=1 }^{ n }{ \tan ^{ -1 }{ \left(\dfrac { 2r }{ 1+r^{ 2 }({ r }^{ 2 }-1) } \right) }  } $$

    $$=\lim {n\to \infty } \sum _{ r=1 }^{ n }{ \tan ^{ -1 }{ \left(\dfrac { r(r+1)-r(r-1) }{ 1+[r({ r }-1)][r(r+1)] } \right) }  } $$

    $$=\lim {n\to \infty } \sum _{ r=1 }^{ n }{ \tan ^{ -1 }{ (r(r+1)- }  } \tan ^{ -1 }{ (r(r-1)) } $$

    $$=\lim {n\to \infty } [tan ^{-1} (1(1+1)- \tan ^{-1} (1(1-1))+tan^{-1} (2(2+1))-\tan ^{-1} (2(2-1))\\ \quad +.......+\tan^{-1}(n(n+1))-\tan^{-1} (n(n-1))]$$

    $$=\lim {n\to \infty } [tan ^{-1} (2)- \tan ^{-1} (0)+tan^{-1} (6))-\tan ^{-1} (2)+.........+\tan^{-1}(n(n+1))-\tan^{-1} (n(n-1))]$$

    $$=\lim {n\to \infty } [- \tan ^{-1} (0)+\tan^{-1}(n(n+1))]$$

    $$=\lim {n\to \infty } [\tan^{-1}(n(n+1))]$$

    $$=\lim {n\to \infty } [\tan^{-1}(n^2+n))]$$

    $$=\tan ^{-1} (\infty )$$

    $$=\frac {\pi}{2}$$
  • Question 7
    1 / -0
    Given that $$0 \le x\le \dfrac 12$$ the value of $$\tan \left[ { sin }^{ -1 }\left( \dfrac { x }{ \sqrt { 2 }  } +\sqrt { \dfrac { 1-{ x }^{ 2 } }{ 2 }  }  \right) -{ sin }^{ -1 }x \right]$$ is
    Solution
    $$\tan \left[\sin^{-1}\left(\dfrac{x}{\sqrt2} + \sqrt{\dfrac{1-x^2}{2}}\right)-\sin x\right]$$

    Put $$x = \sin \theta$$

    $$\tan \left[\sin^{-1}\left(\dfrac{\sin \theta + \cos \theta}{\sqrt{2}}\right)+(-\theta)\right]$$

    $$= \tan \left[\sin^{-1}\left(\sin \theta \cos\left(\dfrac{\pi}{4} \right)+\cos \theta\sin\left(\dfrac{\pi}{4} \right)\right)-\theta\right]$$

    $$= \tan \left[\sin^{-1}\sin\left(\dfrac{\pi}{4} + \theta\right)-\theta\right]$$

    $$= \tan \left(\dfrac{\pi}{4}\right)$$

    $$= 1$$
  • Question 8
    1 / -0
    The value of $$\sin^{-1}\left\{ \cot { \left\{ \sin ^{ -1 }{ \sqrt { \frac { 2-\sqrt { 3 }  }{ 4 }  } +\cos ^{  }{ \frac { \sqrt { 12 }  }{ 4 } +\sec ^{ -1 }{ \sqrt { 2 }  }  }  }  \right\}  }  \right\} $$ is equal to
    Solution
    Solution:-
    $$ sin^{-1}\left \{ cot \left \{ sin^{-1}\sqrt{\dfrac{2-\sqrt{3}}{4}}+cos^{-1}\dfrac{\sqrt{12}}{4}+sec^{-1}\sqrt{2} \right \} \right \}$$
    We know that
    $$ sin \dfrac{\pi}{12} = \sqrt{\dfrac{2-\sqrt{3}}{4}} cos\dfrac{\pi}{6} = \dfrac{\sqrt{3}}{2} = \dfrac{\sqrt{12}}{4}$$
    $$ sec \dfrac{\pi}{4} = \sqrt{2}$$
    $$ sin^{-1} (cot(\dfrac{\pi}{12}+\dfrac{\pi}{6} + \dfrac{\pi}{4}))$$
    $$ sin^{-1} \left \{ cot \left ( \dfrac{\pi}{2} \right ) \right \}$$
    $$ sin^{-1}0$$
    $$0$$
    C is correct.
  • Question 9
    1 / -0
    the value of $$\cos ^{ -2 }{ \left( \cos { 10 }  \right)  }$$ is
    Solution

  • Question 10
    1 / -0
    The solution set of the equation $$\sin^{-1}\sqrt{1-x^2}+\cos^{-1}x=\cot^{-1}\dfrac{\sqrt{1-x^2}}{x}-\sin^{-1}x$$ is?
    Solution
                                                                           $$\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right) = {\cot ^{ - 1}}\frac{{\sqrt {1 - {x^2}} }}{x} - {\sin ^{ - 1}}\sqrt {1 - {x^2}} $$
                                                                           let $$x = \cos \theta ,\,\theta  = {\cos ^{ - 1}}x$$
    \begin{array}{l} \frac { \pi  }{ 2 } ={ \cot ^{ -1 }  }\frac { { \sqrt { 1-{ { \cos   }^{ 2 } }\theta  }  } }{ { \cos  \theta  } } -{ \sin ^{ -1 }  }\sqrt { 1-{ { \cos   }^{ 2 } }\theta  }  \\ \frac { \pi  }{ 2 } ={ \cot ^{ -1 }  }\left( { \frac { { \sin  \theta  } }{ { \cos  \theta  } }  } \right) -{ \sin ^{ -1 }  }\left( { \sin  \theta  } \right)  \\ \frac { \pi  }{ 2 } ={ \cot ^{ -1 }  }\left[ { \cot  \left( { \frac { \pi  }{ 2 } -\theta  } \right)  } \right] -\theta  \\ \frac { \pi  }{ 2 } =\frac { \pi  }{ 2 } -\theta -\theta  \\ 0=-2\theta  \\ \theta =0 \\ { \cos ^{ -1 }  }x=0 \\ x=\cos { 0^{ 0 } }  \\ x=1 \\ \left[ { -1,1 } \right] -\{ 0\}  \end{array}
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now