Let $$\cos^{-1}\dfrac{(3+5\cos x)}{(5+3\cos x)}=\alpha$$
$$\dfrac{3+5\cos x}{5+3\cos x}=\cos \alpha$$
$$\because \cos \alpha\dfrac{[1-\tan^2(\dfrac{\alpha}{2})]}{[1+\tan^2(\dfrac{x}{2})]}$$
$$\cos \alpha=5\dfrac{\dfrac{[1-\tan^2(\dfrac{x}{2})]}{[1+\tan^2(\dfrac{x}{2})]}+3}{5+3[\dfrac{1-\tan^2(\dfrac{x}{2})}{1+\tan^2(\dfrac{x}{2})}]}$$
$$\Rightarrow \dfrac{5(1-\tan^2(\dfrac{x}{2}))+3(1+\tan^2(\dfrac{x}{2}))}{5(1+\tan^2(\dfrac{x}{2}))+3(1-\tan^2(\dfrac{x}{2}))}$$
$$\Rightarrow \dfrac{5-5\tan^2(\dfrac{x}{2})+3+3\tan^2(\dfrac{x}{2})}{5+5\tan^2(\dfrac{x}{2})+3-3\tan^2(\dfrac{x}{2})}$$
$$\Rightarrow \dfrac{8-2\tan^2(\dfrac{x}{2})}{8+2\tan^2(\dfrac{x}{2})}$$
$$\dfrac{4-\tan^2(\dfrac{x}{2})}{4+\tan^2(\dfrac{x}{2})}$$
$$\therefore \sin \alpha=\sqrt{1-\cos^2\alpha}$$
$$\Rightarrow \sin \alpha=\sqrt{1-\left(\dfrac{4-\tan^2\left(\dfrac{x}{2}\right)}{4+\tan^2\left(\dfrac{x}{2}\right)}\right)^2}$$
$$\Rightarrow \sqrt{\dfrac{\left[4+\tan^2(\dfrac{x}{2}\right)^2]\left[4+\tan^2(\dfrac{x}{2})\right]}{4+\tan^2\left(\dfrac{x}{2}\right)}^2}^2$$
$$=\sqrt{\dfrac{4+\tan^2\left(\dfrac{x}{2}\right)-4+\tan^2\left(\dfrac{x}{2}\right)\left(4+\tan^2(\dfrac{x}{2}+4-\tan^2\right)\left(\dfrac{x}{2})\right)}{\left[4+\tan^2(\dfrac{x}{2})\right]^2}}$$
$$\Rightarrow \dfrac{\sqrt{2\tan^2(\dfrac{x}{2}).8}}{4+\tan^2(\dfrac{x}{2})}\Rightarrow \dfrac{4\tan(\dfrac{x}{2})}{4\tan^2(\dfrac{n}{2})}$$
$$\because \tan\left(\dfrac{x}{2}\right)=\dfrac{1-\cos \alpha}{\sin \alpha}$$
$$\therefore \dfrac{1-\left(\dfrac{4-\tan^2(\dfrac{n}{2})}{4+\tan^2(\dfrac{n}{2})}\right)}{\left(\dfrac{4\tan(\dfrac{n}{2})}{4+\tan^2(\dfrac{n}{2})}\right)}\Rightarrow \dfrac{4+\tan^2\left(\dfrac{n}{2}-4+\tan^2\right)\left(\dfrac{n}{2}\right)}{4\tan \left(\dfrac{n}{2}\right)}$$
$$\tan\left(\dfrac{x}{2}\right)\Rightarrow \dfrac{2\tan^2\left(\dfrac{x}{2}\right)}{2^4\tan\left(\dfrac{x}{2}\right)}\Rightarrow \dfrac{1}{2}\tan\left(\dfrac{x}{2}\right)$$
$$\dfrac{\alpha}{2}=\tan^{-1}\left[\dfrac{1}{2}\tan(\dfrac{x}{2})\right]$$
$$\boxed{\cos^{-1}\left(\dfrac{5 \cos x+3}{5+3\cos x}\right)\Rightarrow 2\tan^{-1}\left[\dfrac{1}{2}\tan(\dfrac{n}{2})\right]}$$
So, option (b) is correct.