Self Studies

Inverse Trigonometric Functions Test - 36

Result Self Studies

Inverse Trigonometric Functions Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\tan ^{ -1 }{ \left( 2\sin { \left( \sec ^{ -1 }{ \left( 2 \right)  }  \right)  }  \right)  } $$ is
    Solution
    $$\tan^{-1}\left(2\sin\left(\sec^{-1}(2)\right)\right)$$
    Let $$x=\sec^{-1}(2)$$
    $$\tan^{-1}\left(2\sin x\right)$$              ----- ( 1 )
    $$x=\sec^{-1}(2)$$
    $$\Rightarrow$$  $$\sec x=2$$
    $$\Rightarrow$$  $$\dfrac{1}{\cos x}=2$$

    $$\Rightarrow$$  $$\dfrac{1}{2}=cos x$$

    $$\Rightarrow$$  $$x=\cos^{-1}\left(\dfrac{1}{2}\right)$$

    $$\Rightarrow$$  $$x=\dfrac{\pi}{3}$$
    Substituting value of $$x$$ in ( 1 ) we get,
    $$\Rightarrow$$  $$\tan^{-1}\left(2\sin \dfrac{\pi}{3}\right)$$

    $$\Rightarrow$$  $$\tan^{-1}\left(2\times \dfrac{\sqrt{3}}{2}\right)$$

    $$\Rightarrow$$  $$\tan^{-1}(\sqrt{3})$$

    $$\Rightarrow$$  $$\dfrac{\pi}{3}$$

    $$\therefore$$  $$\tan^{-1}\left(2\sin\left(\sec^{-1}(2)\right)\right)=\dfrac{\pi}{3}$$
  • Question 2
    1 / -0
    The value of $$\cos ^{ -1 }{ \left\{ \frac { \sqrt { 1-\sin { x }  } +\sqrt { 1+\sin { x }  }  }{ \surd \left( 1-\sin { x }  \right) -\surd \left( 1+\sin { x }  \right)  }  \right\}  }$$ is $$\left( 0<x<2\pi  \right)$$
    Solution
    $$ cot^{-1}(\dfrac{\sqrt{1-sinx}+\sqrt{1+sinx}}{\sqrt{1-sinx}-\sqrt{1+sinx}})$$
    $$ sin 2x = 2sinx cosx. $$
    also, $$ sinx = 2sin \dfrac{x}{2} cos\dfrac{x}{2} ...(1)$$
    also, $$ 1+sinx = 2sin\dfrac{x}{2} cos \dfrac{x}{2}+1 $$
    since $$ sin^2x+cos^2x = 1 $$
    $$ sin^2 \dfrac{x}{2}+cos^2 \dfrac{x}{2} = 1 $$
    $$ 1+sinx = sin^2 \dfrac{x}{2}+cos^2 \dfrac{x}{2} + 2sin \dfrac{x}{2} cos \dfrac{x}{2}$$
    $$ 1+sinx = (sin\dfrac{x}{2}+cos \dfrac{x}{2})^2$$
    $$ \sqrt{1+sinx} = sin\dfrac{x}{2}+cos\dfrac{x}{2} ...(2)$$
    Similarly
    multiply by -1 in $$ eq^n $$ (1),
    $$ -sinx = 2sin\dfrac{x}{2} cos\dfrac{x}{2}$$
    Now adding 1 to the above $$ eq^n $$
    $$ 1-sinx = 1-2sin \dfrac{x}{2}cos\dfrac{x}{2}$$
    $$ \therefore $$ we get $$ \sqrt{1-sinx} = (cos\dfrac{x}{2}-sin\dfrac{x}{2})...(3)$$
    $$ cos^{-1}(\dfrac{\sqrt{1-sinx}+\sqrt{1+sinx}}{\sqrt{1-sinx}-\sqrt{1+sinx}})$$
    $$ = cos^{-1} (\frac{cos\dfrac{x}{2}-sin\dfrac{x}{2}+sin\dfrac{x}{2}+cos\dfrac{x}{2}}{cos\dfrac{x}{2}-sin\dfrac{x}{2}-sin\dfrac{x}{2}-cos\dfrac{x}{2}})$$
    $$ = cos^{-1}(\frac{2cos\dfrac{x}{2}}{-2sin\dfrac{x}{2}}) = cot^{-1}(cot\dfrac{x}{2})$$
    $$ = -cot^{-1}(cot\dfrac{x}{2}) (\therefore cotx $$ is an add function)
    $$ = -\dfrac{x}{2}$$

  • Question 3
    1 / -0
    Annual expenses of  A and B are in the ratio  $$5:3$$. The  saving  of Aand B are in the ratio $$1:2$$. Find the expenses of A. given that the income of A is $$Rs. 8000$$  and that of B is $$Rs.9000$$.
    Solution
    Given 

    Income of $$A$$ is $$8000$$ 

    Income of $$B$$ is $$9000$$ 

    Expense Ratio is $$5:3$$ 

    Let the common factor be $$x$$ 

    So Expenses of $$A$$ are $$5x$$

    Expenses of $$B$$ are $$3x$$

    Savings Ratio is $$1:2$$ 

    Let the common factor be $$y$$

    So Savings of $$A$$ are $$y$$

    Savings of $$B$$ are $$2y$$

    According to Question 

    $$5x+y=8000\cdots(1)$$

    $$3x+2y=9000\cdots(2)$$

    $$2(1)-(2)$$

    $$\implies 10x+2y-3x-2y=16000-9000$$ 

    $$\implies 7x=7000$$

    $$\implies x=1000$$

    Expenses of $$A$$ is $$5x=5\times 1000=5000$$

  • Question 4
    1 / -0
    $$2\cot ^{ -1 }{ 7 } +\cos ^{ -1 }{ \dfrac { 3 }{ 5 }  } $$ is equal to 
    Solution
    $$2\cot^{-1}7+\cos^{-1}\left(\dfrac{3}{5}\right)$$

    Let $$\cos^{-1}\left(\dfrac{3}{5}\right)=\theta$$

    $$\cos\theta =\dfrac{3}{5}$$

    $$\cot\theta =\dfrac{3}{4}$$

    $$2\cot^{-1}(7)+\cot^{-1}\left(\dfrac{3}{4}\right)$$ $$\left[\because 2\cot^{-1}(x)=\cot^{-1}\left(\dfrac{x^2-1}{2x}\right)\right]$$

    $$\cot^{-1}\left(\dfrac{7^2-1}{2\times 7}\right)+\cot^{-1}\left(\dfrac{3}{4}\right)$$

    $$\cot^{-1}\left(\dfrac{24}{7}\right)+\cot^{-1}\left(\dfrac{3}{4}\right)$$

    $$\cot^{-1}\left(\dfrac{\dfrac{24}{7}\times \dfrac{3}{4}-1}{\dfrac{24}{7}+\dfrac{3}{4}}\right)$$ $$\left[\because \cot^{-1}(a)+\cot^{-1}(b)=\cot^{-1} \left(\dfrac{ab-1}{a+b}\right)\right]$$

    $$\cot^{-1}\left(\dfrac{44/28}{117/28}\right)=\cot^{-1}\left(\dfrac{44}{117}\right)$$.
  • Question 5
    1 / -0
    $${ cos }^{ -1 }\left( \dfrac { 3+5\cos { x }  }{ 5+3\cos { x }  }  \right) =$$
    Solution
    Let $$\cos^{-1}\dfrac{(3+5\cos x)}{(5+3\cos x)}=\alpha$$
    $$\dfrac{3+5\cos x}{5+3\cos x}=\cos \alpha$$
    $$\because \cos \alpha\dfrac{[1-\tan^2(\dfrac{\alpha}{2})]}{[1+\tan^2(\dfrac{x}{2})]}$$
    $$\cos \alpha=5\dfrac{\dfrac{[1-\tan^2(\dfrac{x}{2})]}{[1+\tan^2(\dfrac{x}{2})]}+3}{5+3[\dfrac{1-\tan^2(\dfrac{x}{2})}{1+\tan^2(\dfrac{x}{2})}]}$$
    $$\Rightarrow \dfrac{5(1-\tan^2(\dfrac{x}{2}))+3(1+\tan^2(\dfrac{x}{2}))}{5(1+\tan^2(\dfrac{x}{2}))+3(1-\tan^2(\dfrac{x}{2}))}$$
    $$\Rightarrow \dfrac{5-5\tan^2(\dfrac{x}{2})+3+3\tan^2(\dfrac{x}{2})}{5+5\tan^2(\dfrac{x}{2})+3-3\tan^2(\dfrac{x}{2})}$$
    $$\Rightarrow \dfrac{8-2\tan^2(\dfrac{x}{2})}{8+2\tan^2(\dfrac{x}{2})}$$
    $$\dfrac{4-\tan^2(\dfrac{x}{2})}{4+\tan^2(\dfrac{x}{2})}$$

    $$\therefore \sin \alpha=\sqrt{1-\cos^2\alpha}$$
    $$\Rightarrow \sin \alpha=\sqrt{1-\left(\dfrac{4-\tan^2\left(\dfrac{x}{2}\right)}{4+\tan^2\left(\dfrac{x}{2}\right)}\right)^2}$$

    $$\Rightarrow \sqrt{\dfrac{\left[4+\tan^2(\dfrac{x}{2}\right)^2]\left[4+\tan^2(\dfrac{x}{2})\right]}{4+\tan^2\left(\dfrac{x}{2}\right)}^2}^2$$

    $$=\sqrt{\dfrac{4+\tan^2\left(\dfrac{x}{2}\right)-4+\tan^2\left(\dfrac{x}{2}\right)\left(4+\tan^2(\dfrac{x}{2}+4-\tan^2\right)\left(\dfrac{x}{2})\right)}{\left[4+\tan^2(\dfrac{x}{2})\right]^2}}$$

    $$\Rightarrow \dfrac{\sqrt{2\tan^2(\dfrac{x}{2}).8}}{4+\tan^2(\dfrac{x}{2})}\Rightarrow \dfrac{4\tan(\dfrac{x}{2})}{4\tan^2(\dfrac{n}{2})}$$

    $$\because \tan\left(\dfrac{x}{2}\right)=\dfrac{1-\cos \alpha}{\sin \alpha}$$
    $$\therefore \dfrac{1-\left(\dfrac{4-\tan^2(\dfrac{n}{2})}{4+\tan^2(\dfrac{n}{2})}\right)}{\left(\dfrac{4\tan(\dfrac{n}{2})}{4+\tan^2(\dfrac{n}{2})}\right)}\Rightarrow \dfrac{4+\tan^2\left(\dfrac{n}{2}-4+\tan^2\right)\left(\dfrac{n}{2}\right)}{4\tan \left(\dfrac{n}{2}\right)}$$

    $$\tan\left(\dfrac{x}{2}\right)\Rightarrow \dfrac{2\tan^2\left(\dfrac{x}{2}\right)}{2^4\tan\left(\dfrac{x}{2}\right)}\Rightarrow \dfrac{1}{2}\tan\left(\dfrac{x}{2}\right)$$

    $$\dfrac{\alpha}{2}=\tan^{-1}\left[\dfrac{1}{2}\tan(\dfrac{x}{2})\right]$$

    $$\boxed{\cos^{-1}\left(\dfrac{5 \cos x+3}{5+3\cos x}\right)\Rightarrow 2\tan^{-1}\left[\dfrac{1}{2}\tan(\dfrac{n}{2})\right]}$$
    So, option (b) is correct.
  • Question 6
    1 / -0
    The value of $$\cos\left\{\tan^{-1}\left(\tan \dfrac{15\pi}{4}\right)\right\}$$ is?
    Solution
    Given 

    $$\cos \left(\tan ^{-1} \left(\tan \dfrac {15\pi}4 \right)\right)$$

    $$\implies \cos \left(\tan ^{-1} \left(\tan \left(4\pi -\dfrac {\pi}4 \right)\right)\right)$$

    $$\implies \cos \left(\tan ^{-1} \left(\tan \left(-\dfrac {\pi}4 \right)\right)\right)$$

                                                    $$\bigg(\tan (-x)=-\tan x\bigg)$$

    $$\implies \cos \left(-\dfrac {\pi}4 \right)$$

    $$\implies \dfrac 1{\sqrt 2}$$

  • Question 7
    1 / -0
    If the number $$93215x2$$ is completely divisible by $$11$$, then $$x$$ is equal to  
    Solution

    Given number is $$93215x2$$

    The number can be represented as $$9321502+10x$$

    Dividing $$9321502$$ leaves $$3$$ as remainder 

    So the expression $$10x+3$$ should be divisible by $$11$$ to make the whole number to  be divisible by $$11$$

    $$\implies 10x+3=11m(say)$$

    $$\implies x=\dfrac{11m-3}{10} $$

    The expression gives an integer value at $$m=3$$

    $$\implies x=\dfrac{33-3}{10}$$

    $$\implies x=3$$
  • Question 8
    1 / -0
    If $$\sin^{-1}\left(x-\dfrac {x^{2}}{2}+\dfrac {x^{3}}{4}-...\infty \right)+\cos^{-1}\left(x^{2}-\dfrac {x^{4}}{2}+\dfrac {x^{6}}{4}-...\infty \right)=\dfrac {\pi}{2}$$ for $$0 < |x| < \sqrt {2}$$,then $$x$$ equal
    Solution
    As we know that 
    Sum of an infinite $$GP$$ is $$\dfrac{a}{1-r}$$ for $$|r|<1$$

    So $$x-\dfrac{x^2}{2}+\dfrac{x^3}{4}-\cdots\infty=\dfrac{x}{1+\dfrac{x}{2}}$$

    And also $$x^2-\dfrac{x^2}{2}+\dfrac{x^6}{4}-\cdots\infty=\dfrac{x^2}{1+\dfrac{x^2}{2}}$$

    So $$\text{sin}^{-1}\bigg(x-\frac{x^2}{2}+\frac{x^3}{4}-\cdots\infty\bigg)+\text{cos}^{-1}\bigg(x^2-\frac{x^4}{4}+\frac{x^6}{4}-\cdots\infty\bigg)=\dfrac{\pi}{2}$$

    $$\implies \text{sin}^{-1}\bigg(\dfrac{x}{1+\frac{x}{2}}\bigg)=\dfrac{\pi}{2}-\text{cos}^{-1}\bigg(\dfrac{x^2}{1+\frac{x^2}{2}}\bigg)$$

    $$\implies \text{sin}^{-1}\bigg(\dfrac{2 x}{x+2}\bigg)=\text{sin}^{-1}\bigg(\dfrac{2 x^2}{x^2+2}\bigg)$$

    $$\implies \dfrac{1}{x+2}=\dfrac{x}{x^2+2}$$

    $$\implies x^2+2 x=x^2+2$$

    $$\implies 2 x=2$$

    $$\implies x=1$$
  • Question 9
    1 / -0
    The value of $$\cot^{-1}{3}+sec^{-1}{\dfrac{\sqrt{5}}{2}}$$ is
    Solution
    $$\cot^{-1}(3)+\sec^{-1}\sqrt{5}/2$$
    $$\tan^{-1}\left(\dfrac{1}{3}\right)+\tan^{-1}\left(\dfrac{1}{2}\right)$$
    $$\tan^{-1}\left(\dfrac{\dfrac{5}{6}}{1-\dfrac{1}{6}}\right)=\tan^{-1}(1)$$
    $$=\dfrac{\pi}{4}$$

  • Question 10
    1 / -0
    The value of $$\tan^{-1}\dfrac {1}{2}+\tan^{-1}\dfrac {1}{3}$$ is
    Solution
    $$\tan^{-1}\left(\dfrac{1}{2}\right)+\tan^{-1}\left(\dfrac{1}{3}\right)$$

    use formula 
    $$\tan^{-1}{a}+\tan^{-1}{b}$$ $$\tan^{-1} (\dfrac{a+b}{1-ab})$$

    $$\Rightarrow \tan^{-1}\left(\dfrac{5}{6-1}\right)=\tan^{-1}\left(\dfrac{5}{5}\right)$$

    $$=\tan^{1}(1)$$

    $$=\dfrac{\pi}{4}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now