Self Studies

Inverse Trigonometric Functions Test - 37

Result Self Studies

Inverse Trigonometric Functions Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the values of $$\cos^{-1}\left(\cos \dfrac {7\pi}{6}\right)$$ is equal to
    Solution
    Let $$y=\cos^{-1}\left(\cos\dfrac{7\pi}{6}\right)$$
    $$\cos y=\cos\left(\dfrac{7\pi}{6}\right)$$
    $$\cos y=\cos (210^{o})$$
    We know that range of principal values is $$\cos $$ is $$(0, \pi)$$
    $$i.e (0^{o}, 180^{o})$$
    Hence $$4=210^{o}$$ not possible
    Now, 
    $$\cos y=\cos (210^{o})$$                                
    $$\cos y=\cos (360-150^{o})$$
    $$\cos y=\cos (150^{o})$$
    $$\cos y=\cos \left(\dfrac{5\pi}{5}\right)$$


    $$4=\dfrac{5\pi}{6}$$
    Which is in range of principal values of $$\cos ^{-1}$$ i.e $$(0, \pi)$$
    $$\therefore y=\dfrac{5\pi}{6}$$



  • Question 2
    1 / -0
    The value of $$3\tan^{-1}\dfrac {1}{2}+2\tan^{-1}\dfrac {1}{5}+\sin^{-1}\dfrac {142}{65\sqrt {5}}$$ is
    Solution
    $$\Rightarrow 3\tan^{-1}\dfrac{1}{2}+2\tan^{-1}\dfrac{1}{5}+\sin^{-1}\dfrac{142}{65\sqrt{5}}$$
    $$\Rightarrow \left(\tan^{-1}\dfrac{1}{\alpha}+\tan^{-1}\dfrac{1}{\alpha}\right)+\tan^{-1}\dfrac{1}{\alpha}+\left(\tan^{-1}\dfrac{1}{5}+\tan^{-1}\dfrac{1}{5}\right)+\tan^{-1}\left(\dfrac{142}{31}\right)$$
    $$\Rightarrow \left(\tan^{-1}\dfrac{4}{3}+\tan^{-1}\dfrac{1}{\alpha}\right)+\tan^{-1}\left(\dfrac{5}{12}\right)+\tan^{-1}\left(\dfrac{142}{31}\right)$$
    $$\Rightarrow \tan^{-1}\left(\dfrac{11}{2}\right)+\tan^{-1}\left(\dfrac{5}{12}\right)+\tan^{-1}\left(\dfrac{142}{31}\right)$$
    $$\Rightarrow \pi +\tan^{-1}\left(\dfrac{-142}{31}\right)+\tan^{-1}\left(\dfrac{142}{31}\right)$$
    $$\Rightarrow \pi$$
    Important property used
    $$\tan^{-1}(x)+\tan^{-1}(y)=\tan^{-1}\left(\dfrac{x+y}{1-xy}\right)$$
    for $$x > o, y > o$$ $$xy < 1$$
    $$\tan^{-1}(x)+\tan^{-1}(y)=\pi +\tan^{-1}\left(\dfrac{x+y}{1-xy}\right)$$
    for $$x > 0, y > 0, xy > 1$$.
  • Question 3
    1 / -0
    Let in $$\Delta ABC, \, \angle A = \dfrac{\pi}{2}$$. Then value of $$\tan^{-1} \dfrac{b}{a + c} + \tan^{-1} \dfrac{c}{a + b}$$ equals 
    Solution
    In $$\Delta ABC$$ ,
    $$\angle A=90^{\circ}$$

    So, from Pythagorus theorem,
    $$a^{2}=b^{2}+c^{2}$$ .............. (1)

    $$\tan^{-1}\cfrac{b}{a+c}+\tan^{-1}\cfrac{c}{a+b}$$

    $$=\tan^{-1}\cfrac{\cfrac{b}{a+c}+\cfrac{c}{a+b}}{1-\cfrac{b}{a+c}\cdot \cfrac{c}{a+b}}$$

    $$=\tan^{-1}\cfrac{ab+b^{2}+ac+c^{2}}{a^{2}+ab+ac}$$

    $$=\tan^{-1}\cfrac{ab+ac+a^{2}}{a^{2}+ab+ac}$$ from equation (1)

    $$=\tan^{-1}(1)$$

    $$=\cfrac{\pi }{4}$$
  • Question 4
    1 / -0
    Find the approximate value of $$\sin^{-1}(0.51)$$ given that $$\sqrt {3}=1.7321$$
    Solution
    $$\sin^{-1}\left(0.5+0.01\right)=\sin^{1}\left(0.51\right)$$
    $$\therefore$$ Approx value$$=f \left(x\right)+hf’\left(x\right)$$
    Here $$x=0.5$$
    $$h=0.01$$
    $$f \left(u\right)=\sin^{1}x$$
    $$f‘ \left(u\right)=\dfrac{1}{\sqrt{1-x^{2}}}$$
    $$\therefore f \left(0.5\right)=\sin^{-1}\left(0.5\right)=\frac{\pi}{6}$$
    $$\therefore f’ \left(0.5\right)=\dfrac{1}{\sqrt{1-\left(0.5\right)^{2}}}$$
    $$=\dfrac{1}{\sqrt{0.75}}$$
    $$=\boxed{\dfrac{2}{\sqrt{3}}}$$
    $$\therefore$$ Approx value $$= \dfrac{\pi}{6}+ \dfrac{2}{\sqrt{3}} \times \left(\dfrac{1}{100}\right)$$
    $$\dfrac{\pi}{6}+\dfrac{2}{100\sqrt{3}}$$
    $$\boxed{ =\dfrac{\pi}{6}+0.011541}$$ 

  • Question 5
    1 / -0
    $${\sin ^{ - 1}}(\cos \left( {{{\sin }^{ - 1}}x} \right)) + {\cos ^{ - 1}}(\sin \left( {{{\cos }^{ - 1}}x} \right)){\text{is}}\;{\text{equal}}\;{\text{to}}{\text{.}}$$
    Solution
    Given 

    $$\sin ^{-1} (\cos \sin ^{-1} (x)) +\cos ^{-1} \left(\sin \left(\cos ^{-1} x\right)\right)$$

                         $$ \bigg( \left(\sin ^{-1}  x+\cos ^{-1} x \right) =\dfrac \pi 2\bigg)$$

    $$\dfrac \pi 2- \cos ^{-1} (\cos \sin ^{-1} (x)) + \dfrac \pi 2-\sin ^{-1} \left(\sin \left(\cos ^{-1} x\right)\right)$$

    $$\pi -\sin ^{-1}  x-\cos ^{-1} x$$

                                 $$\bigg( \cos ^{-1} \cos x =x ,\sin ^{-1} \sin x=x\bigg)$$

    $$\pi - \left(\sin ^{-1}  x+\cos ^{-1} x \right)$$

                         $$ \bigg( \left(\sin ^{-1}  x+\cos ^{-1} x \right) =\dfrac \pi 2\bigg)$$
     
    $$\pi-\dfrac \pi 2$$

    $$\implies \dfrac \pi 2$$
  • Question 6
    1 / -0
    $$\cot ^{ -1 }{ \left( \dfrac { \sqrt { 1-\sin { x }  } +\sqrt { 1+\sin { x }  }  }{ \sqrt { 1-\sin { x }  } -\sqrt { 1+\sin { x }  }  }  \right)  }$$=....$$\left( 0<x<\dfrac { \pi  }{ 2 }  \right)$$
    Solution
    We have,
    $$\Rightarrow \cot^{-1}\left(\dfrac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{(\sqrt{1-\sin x}+\sqrt{1+\sin x})^2}{(1-\sin x)-(1+\sin x)}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{1-\sin x+1+\sin x+2\sqrt{1-\sin^2x}}{1-\sin x-1-\sin x}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{2+2\sqrt{\cos^2x}}{-2\sin x}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{1+\cos x}{-\sin x}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{1+2\cos^2 x/2-1}{-2\sin\dfrac{x}{2}\cos \dfrac{x}{2}}\right)$$
    $$\Rightarrow \cot^{-1}\left(\dfrac{\cos x/2}{\sin x/2}\right)$$
    $$\Rightarrow \cot^{-1}(-\cot x/2)$$
    $$\Rightarrow \cot^{-1}(\cot (\pi -x/2))$$
    $$\Rightarrow \pi -x/2$$.

  • Question 7
    1 / -0
    Find the value of $${\sin ^{ - 1}}\left( 1 \right)$$
    Solution
    value of$$ \sin^{-1}(1) $$ 
    $$\sin x$$ is in vertible form
     $$\left [ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right ]$$ in this range only 
    $$\sin \dfrac{\pi }{2}=1$$ 
    $$\sin^{-1}(1)=\dfrac{\pi }{2}.$$
  • Question 8
    1 / -0
    If $${\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{1}{x} + {\tan ^{ - 1}}\dfrac{1}{{{a^2} - x + 1}},\,then\,x\,is\,$$
    Solution
    Given,
    $${\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{1}{x} + {\tan ^{ - 1}}\dfrac{1}{{{a^2} - x + 1}}$$

    or, $${\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{\dfrac{1}{x}+\dfrac{1}{a^2-x+1}}{1-\dfrac{1}{x(a^2-x+1)}} $$

    or, $${\tan ^{ - 1}}\dfrac{1}{{a - 1}} = {\tan ^{ - 1}}\dfrac{a^2+1}{a^2x-x^2+x-1} $$

    or, $$(a-1)(a^2+1)=a^2 x-x^2+x-1$$

    or, $$a^3+a-a^2-1=a^2 x-x^2+x-1$$

    or, $$a^2(a-x)-(a^2-x^2)+(a-x)=0$$

    or, $$(a-x)(a^2-a-x+1)=0$$

    or, $$x=a, a^2-a+1$$.
  • Question 9
    1 / -0
    $${\cot ^{ - 1}}\left( {2 + \sqrt 3 } \right) = $$
    Solution
    Solution :- given 
    $$ \displaystyle \Rightarrow cot^{-1}(2+\sqrt{3}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{2(2+\sqrt{3})}{2}) $$ multiply num and den by 2

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{4+2\sqrt{3}}{3-1}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{3+1+2\sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{(\sqrt{3})^{2}+(1)^{2}+2.1.\sqrt{3}}{(\sqrt{3}+1)(\sqrt{3}-1)}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{(\sqrt{3}+1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{\sqrt{3}+1}{\sqrt{3}-1}) $$

    $$ \displaystyle \Rightarrow cot^{-1}(\frac{(cot45\,cot30+1)}{cot30-cot45}) $$

    $$ \displaystyle  = cot^{-1} (cot (45-30))$$

    $$= 45^{\circ}-30^{\circ} $$

    $$ \displaystyle  = 15^{\circ} $$

    $$ \displaystyle  = \frac{\pi }{12} $$ Ans 
  • Question 10
    1 / -0
    $$cot^{-1}(\sqrt{cos\alpha })-tan^{-1}(\sqrt{cos\alpha })=x$$ , then sin x is equal to
    Solution
    $$\cot^{-1}(\sqrt{\cos \alpha})-\tan^{-1}(\sqrt{\cos \alpha})=x$$
    $$\dfrac{\pi}{2}-\tan^{-1}(\sqrt{\cos \alpha})-\tan^{-1}(\sqrt{\cos \alpha})=x$$ (because $$\cot^{-1}x+\tan^{-1}x=\dfrac{\pi}{2}$$)
    $$\Rightarrow \dfrac{\pi}{2}-2\tan^{-1}(\sqrt{\cos \alpha})=x$$
    $$\Rightarrow \sin x=\sin\left(\dfrac{\pi}{2}-2\tan^{-1}(\sqrt{\cos\alpha})\right)$$
    Let's say $$\tan^{-1}(\sqrt{\cos \alpha})=\theta$$
    $$\Rightarrow \tan\theta =\sqrt{\cos\alpha}$$
    $$\sin x=sin\left(\dfrac{\pi}{2}-2\theta\right)=\cos 2\theta$$
    $$=\dfrac{1-\tan^2\theta}{1+\tan^2\theta}$$
    $$=\dfrac{1-\cos\alpha}{1+\cos\alpha}$$
    $$\sin x=\dfrac{1-\cos \alpha}{1+\cos \alpha}$$
    $$=\dfrac{2\sin^2\alpha/2}{2\cos^2\alpha/2}$$
    $$\Rightarrow \sin x=\tan^2\dfrac{\alpha}{2}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now