Self Studies

Inverse Trigonometric Functions Test - 38

Result Self Studies

Inverse Trigonometric Functions Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $${\sin ^{ - 1}}\left( {\cos \dfrac{{33\pi }}{5}} \right)$$ is 
    Solution
    $$\sin^{-1}\left(\cos\dfrac{33\pi}{5}\right)=\sin^{-1}\left(\cos\left(6\pi+\dfrac{3\pi}{5}\right)\right)$$

    $$=\sin^{-1}\left(\cos\left(\dfrac{3\pi}{5}\right)\right)$$

    $$\sin^{-1}\left(\cos\left(\dfrac{\pi}{2}+\dfrac{\pi}{10}\right)\right)$$

    $$=\sin^{-1}\left(-\sin\left(\dfrac{\pi}{10}\right)\right)$$

    $$\therefore \sin^{-1}\left(\cos\dfrac{33\pi}{5}\right)=\dfrac{-\pi}{10}$$
  • Question 2
    1 / -0
    If minimum value of $${\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} = \frac{{{\pi ^2}}}{K}$$ then the value of $$K$$ is 
    Solution

  • Question 3
    1 / -0
    The value of $$\cos(\tan^{-1}(\tan2))$$
    Solution
    $$=\cos ( \tan^{-1} (\tan 2 ) ) = \cos 2$$

  • Question 4
    1 / -0
    If $$\sin ^{ -1 }{ x } =\cot ^{ -1 }{ x } $$ then
    Solution

    $$\mathbf{{\text{Step  - 1: Writing co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x in terms of si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}}$$

                      $${\text{Let co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x  =  }}\theta $$

                      $$ \Rightarrow {\text{ x  =  cot }}\theta $$

                      $${\text{We know that, 1  +  co}}{{\text{t}}^{\text{2}}}\theta {\text{  =  cose}}{{\text{c}}^{\text{2}}}\theta $$

                      $$\therefore {\text{ 1  +  }}{{\text{x}}^{\text{2}}}{\text{  =  }}\dfrac{1}{{{\text{si}}{{\text{n}}^{\text{2}}}\theta }}$$

                      $$ \Rightarrow {\text{ si}}{{\text{n}}^{\text{2}}}\theta {\text{  =  }}\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}$$

                      $$ \Rightarrow {\text{ sin }}\theta {\text{  =  }}\sqrt {\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}} $$

                      $$ \Rightarrow {\text{ }}\theta {\text{  =  si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}} } \right)$$

                      $$ \Rightarrow {\text{ co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x  =  si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}} } \right)$$

    $$\mathbf{{\text{Step  - 2: Equating it to si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x}}}$$

                      $${\text{si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x  =  si}}{{\text{n}}^{{\text{ - 1}}}}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}} } \right)$$

                      $$ \Rightarrow {\text{ x  =  }}\left( {\sqrt {\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}} } \right)$$

                      $$ \Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{  =  }}\dfrac{{\text{1}}}{{{\text{1  +  }}{{\text{x}}^{\text{2}}}}}$$

                      $$ \Rightarrow {\text{ }}{{\text{x}}^{\text{4}}}{\text{  +  }}{{\text{x}}^{\text{2}}}{\text{  -  1  =  0}}$$

                      $$ \Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{  =  }}\dfrac{{{\text{ - 1 }} \pm {\text{ }}\sqrt {{\text{1  +  4}}} }}{{\text{2}}}$$

                      $$\because {\text{ }}{{\text{x}}^{\text{2}}}{\text{ cannot be negative}}$$

                      $$ \Rightarrow {\text{ }}{{\text{x}}^{\text{2}}}{\text{  =  }}\dfrac{{\sqrt {\text{5}} {\text{  -  1}}}}{{\text{2}}}$$

    $$\mathbf{{\text{Hence, If si}}{{\text{n}}^{{\text{ - 1}}}}{\text{x  =  co}}{{\text{t}}^{{\text{ - 1}}}}{\text{x then  }}{{\text{x}}^{\text{2}}}{\text{  =  }}\dfrac{{\sqrt {\text{5}} {\text{  -  1}}}}{{\text{2}}}}$$

  • Question 5
    1 / -0
    $${\cos ^{ - 1}}\dfrac{3}{5} - {\sin ^{ - 1}}\dfrac{4}{5} = {\cos ^{ - 1}}x$$ then $$x$$ is equal to:
    Solution
    $$\cos^{-1} \dfrac{3}{5} - \sin^{-1} \dfrac{4}{5} = \cos^{-1} x$$

    $$\Rightarrow \cos^{-1} \dfrac{3}{5}- \cos^{-1} \dfrac{3}{5} = \cos^{-1} x$$

    $$[\because \sin^{-1} \dfrac{4}{5} \Rightarrow \cos \theta = \dfrac{3}{5}]$$

    $$\Rightarrow  0 = \cos ^{-1} x$$

    $$\Rightarrow \cos 0 =x$$

     $$\Rightarrow 1= x$$
  • Question 6
    1 / -0
    $$Sin^{-1}(2x(1-x^2)) = 2sin^{-1}x$$ is true if.
    Solution

  • Question 7
    1 / -0
    The principal value of $$tan^{-1}[cot\dfrac{3\pi}{4}]$$ is :
    Solution

  • Question 8
    1 / -0
    The greatest and least value of  $${\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2}$$ are respectively 
    Solution
    $$\begin{aligned} \text { let } & \sin ^ { - 1 } x = 0 \\ & = x = \sin \theta \end{aligned}$$
    $$\cos ^ { - 1 } x$$ = $$\pi/2 - {\theta}$$
    thus $$\left( \sin ^ { - 1 } x \right) ^ { 2 } + \left( \cos ^ { - 1 } x \right) ^ { 2 }$$
    $$o ^ { 2 } + \left( \frac { \pi } { 2 } - 0 \right) ^ { 2 }$$
    thus max value is = $$\frac { 5 \pi ^ { 2 } } { 4 }$$
    min value is =$$\frac { \pi ^ { 2 } } { 8 }$$
  • Question 9
    1 / -0
    The number of elements in the range of
    $$f(x)=\sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } +\sec ^{ -1 }{ x } $$ is
    Solution
    $$y=\sin^{-1}x+\cos^{-1}x+\sec^{-1}x$$
    $$\sin^{-1}x+\cos^{-1}x\rightarrow x+(-1, 1)$$
    $$\sec^{-1}x\rightarrow x\in(-\infty, -1)\cup (1, \infty)$$
    $$\therefore x=-1, 1$$
    $$y(-1)=\dfrac{\pi}{2}+\sec^{-1}(-1)=\dfrac{\pi}{2}+\pi =\dfrac{3\pi}{2}$$
    $$y(1)=\dfrac{\pi}{2}+\sec^{-1}1=\dfrac{\pi}{2}+0=\dfrac{\pi}{2}$$
    Hence, range contains two elements.

  • Question 10
    1 / -0
    The algebraic expression for $$\tan \left(\sin^{-1}\cos\ \tan^{-1}\dfrac {x}{2}\right)$$ is
    Solution
    $$\tan { \left( \sin ^{ -1 }{ \cos } \tan ^{ -1 }{ \dfrac { x }{ 2 }  }  \right)  } $$
    $$\because \tan^{-1}\dfrac{x}{2}=\cos^{-1}\dfrac{2}{\sqrt{4+x^2}}$$
    $$=\tan \left( \sin^{-1}\cos \left( cos^{-1}\dfrac{2}{\sqrt{4+x^2}}\right)\right)$$
    $$=\tan \left( \sin^{-1} \left( \dfrac{2}{\sqrt{4+x^2}}\right) \right)$$
    $$\because \sin^{-1}\dfrac{2}{\sqrt{4+x^2}}=\tan^{-1}\dfrac{x}{2}$$
    $$=\tan \left( \tan^{-1}\left( \dfrac{2}{x}\right)\right)$$
    $$=\dfrac{2}{x}.$$
    Hence, the answer is $$\dfrac{2}{x}.$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now