Self Studies

Inverse Trigonometric Functions Test - 39

Result Self Studies

Inverse Trigonometric Functions Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$\sin \left(\dfrac {1}{4}\sin^{-1}\dfrac {\sqrt {63}}{8}\right)$$ is
    Solution


    $$\sin \left(\dfrac 14 \sin ^{-1} \dfrac {\sqrt {63}}8\right)$$

    Let $$x=\sin ^{-1} \dfrac {\sqrt {63}}8$$

    $$\implies \sin x=\dfrac {\sqrt {63}}8$$

    $$\implies \cos x=\dfrac {\sqrt {64-63}}{8}=\dfrac 18$$

    $$\cos \dfrac x2 =\sqrt {\dfrac {1+\cos x}{2}}$$

    $$=\sqrt {\dfrac 12 \left(\dfrac 98\right)}$$

    $$\cos \dfrac x2=\dfrac 34$$

    $$\implies \cos \dfrac x4 =\sqrt {\dfrac {1+\cos \dfrac x2}2} $$

    $$=\sqrt {\dfrac 12 \left(1+\dfrac 34\right)}$$

    $$=\sqrt{\dfrac 78}$$

    $$\implies \sin \dfrac x4$$ 

    $$=\sqrt{1-\cos ^2\dfrac x4}$$

    $$=\sqrt {1-\dfrac 78}$$

    $$=\dfrac 1{2\sqrt 2}$$

  • Question 2
    1 / -0
    If $$\sin ^{-1}x + \sin ^{-1}y + \sin ^{-1}z = \dfrac{3\pi}{2}$$, then $$(x^{500} + y^{500} + z^{500}) - (x^{501} + y^{501} + z^{501})$$ is
    Solution
    We know that the  range of $${\sin}^{-1}{x}$$ is $$\left[-\dfrac{\pi}{2},\dfrac{\pi}{2}\right]$$

    Given:$${\sin}^{-1}{x}+{\sin}^{-1}{y}+{\sin}^{-1}{z}=\dfrac{3\pi}{2}$$

    $$\Rightarrow\,{\sin}^{-1}{x}+{\sin}^{-1}{y}+{\sin}^{-1}{z}=\dfrac{\pi}{2}+\dfrac{\pi}{2}+\dfrac{\pi}{2}$$

    $$\Rightarrow\,{\sin}^{-1}{x}=\dfrac{\pi}{2}\,\,\,{\sin}^{-1}{y}=\dfrac{\pi}{2}\,\,\,{\sin}^{-1}{z}=\dfrac{\pi}{2}$$

    $$\Rightarrow\,x=\sin{\dfrac{\pi}{2}},\,\,y=\sin{\dfrac{\pi}{2}},\,\,z=\sin{\dfrac{\pi}{2}}$$

    $$\Rightarrow\,x=1,y=1,z=1$$

    $$\left({x}^{500}+{y}^{500}+{z}^{500}\right)-\left({x}^{501}+{y}^{501}+{z}^{501}\right)$$

    $$=\left({1}^{500}+{1}^{500}+{1}^{500}\right)-\left({1}^{501}+{1}^{501}+{1}^{501}\right)$$

    $$=\left(1+1+1\right)-\left(1+1+1\right)=3-3=0$$

  • Question 3
    1 / -0
    If $$\tan^{-1}\left(\dfrac{x+1}{x-1}\right)+\tan^{-1}\left(\dfrac{x-1}{x}\right)=\pi +\tan^{-1}(-7)$$, then $$x=$$
    Solution

  • Question 4
    1 / -0
    The number of real solutions of $$\cos ^ { - 1 } x + \cos ^ { - 1 } 2 x = - \pi$$ is

    Solution
    $$\cos ^ { - 1 } x + \cos ^ { - 1 } 2 x = - \pi$$
    We know that, range of $$\cos^{-1}x$$ is $$[0,\pi]$$ and range of $$\cos^{-1}2x$$ is $$[0,\pi]$$.
    So, here we can see both ranges are in positive quantity.
    So, sum of positive quantity cannot be negative quantity.
    $$\therefore$$  $$\cos ^ { - 1 } x + \cos ^ { - 1 } 2 x = - \pi$$ is not possible.
    $$\therefore$$  The number of real solution is $$0.$$
  • Question 5
    1 / -0
    The value of $$ \sin (\cot^{-1}x)$$ is 
    Solution

  • Question 6
    1 / -0
    $$\cos ^ { - 1 } \left( \cos \left( \dfrac { - 17 \pi } { 5 } \right) \right)$$ is equal to

    Solution
    $$\cos^{-1}\left(\cos \left(\dfrac{-17\pi}{5}\right)\right)$$

    $$\Rightarrow \cos^{-1}\left(\cos\dfrac{17\pi}{5}\right)$$

    $$\Rightarrow \cos^{-1}\left(\cos\left(2\pi +\dfrac{7\pi}{5}\right)\right)$$

    $$\Rightarrow \cos^{-1}\left(\cos\dfrac{7\pi}{5}\right)$$

    $$\Rightarrow \cos^{-1}\left(\cos\left(2\pi -\dfrac{3\pi}{5}\right)\right)$$

    $$=\cos^{-1}\cos \dfrac{3\pi}{5}$$

    $$=\dfrac{3\pi}{5}$$.
  • Question 7
    1 / -0
    The value of $$\tan ^{-1} \left (\dfrac{1}{3}\right) +\tan ^{-1} \left (\dfrac{2}{9}\right) + \tan ^{-1}\left  (\dfrac{4}{33}\right) + \tan ^{-1} \left (\dfrac{8}{129}\right) +$$.......$$n$$ terms is
    Solution
    $$\tan^{-1} \left(\dfrac{1}{3} \right) + \tan^{-1} \left(\dfrac{2}{9} \right) + \tan^{-1} \left(\dfrac{4}{33} \right) + \tan^{-1} \left(\dfrac{8}{129} \right) + .... n$$ terms.

    $$= \tan^{-1} \left(\dfrac{2 - 1}{1 + 2.1} \right) + \tan^{-1} \left(\dfrac{4 - 2}{1 + 4.2} \right) + \tan^{-1} \left(\dfrac{8 - 4}{1 + 8.4} \right) + \tan^{-1} \left(\dfrac{16 - 8}{1 + 16 \times 8} \right) +...+ \tan^{-1} \left(\dfrac{2^n - 2^{n - 1}}{1 + 2^n \times 2^{n - 1}} \right)$$

    we know that $$\tan^{-1}x-\tan^{-1}y=\tan^{-1}{\dfrac{x-y}{1+xy}}$$

    $$= \tan^{-1} 2 - \tan^{-1} 1 + \tan^{-1} 4 - \tan^{-1} 2 + \tan^{-1} 8 - \tan^{-1} 4 + \tan^{-1} 16 - \tan^{-1} 8 + ... + \tan^{-1} 2^n - \tan^{-1} 2^{n - 1}$$

    $$= \tan^{-1} 2^n - \tan^{-1} 1$$

    $$= \tan^{-1} 2^n - \dfrac{\pi}{4}$$
  • Question 8
    1 / -0
    $$\sinh { \left( \cosh ^{ -1 }{ x }  \right)  } =$$
    Solution
    We have,
    $$\sin h (\cos h^{-1}x)=?$$
    Let
    $$\cos h^{-1}x=A--------------(1)$$
    $$\cos h\ A=x$$
    Squaring both side
    $$\cos h^{2} A=x^{2}$$
    $$1+\sin h^{2} A=x^{2}$$
    $$\because \cos h^{2}x- \sin h^{2} x=1$$
    $$\sin h^{2} A=x^{2}-1$$
    $$\sin h\ A= \sqrt{x^{2}-1}$$
    $$A= \sin h^{-1} \sqrt{x^{2}-1} ---------(2)$$
    By equation $$(1)$$ and $$(2)$$ to
    $$\cos h^{-1} x= \sin h^{-1} \sqrt{x^{2}-1}$$
    According to given function.
    $$\sin h (\cos h^{-1} x)$$
    $$\Rightarrow \sin h \sin h^{-1} \sqrt{x^{2}-1}$$
    $$\Rightarrow \sqrt{x^{2}-1}$$
    Hence, this is the answer.
  • Question 9
    1 / -0
    $$\sin\ h^{-1}{\left(2^{3/2}\right)}$$=
    Solution
    $$\sin h^{-1}(2^{3/2})=?$$
    Now, we know that
    $$\sin h^{-1}x=\log{(x+\sqrt{x^2+1})}$$
    then,
    $$\sin h^{-1}(2^{3/2})=\log \left(2^{3/2}+\sqrt{(2^{3/2})^{2}+1}\right)$$
    $$=\log{\left(\sqrt{2^3}+\sqrt{2^3+1}\right)}$$
    $$=\log{(\sqrt{8}+\sqrt{9})}$$
    $$=\log{(\sqrt{9}+\sqrt{8})}$$
    $$=\log{(\sqrt{3^2}+\sqrt{8})}$$
    $$\sin h^{-1}(2^{3/2})=\log{(3+\sqrt{8})}$$
    Hence, this is the answer.
  • Question 10
    1 / -0
    If $$\cot^{-1} [\sqrt{\cos \alpha}] - \tan^{-1} [\sqrt{\cos \alpha}] = x$$, then $$\sin x$$ is equal to
    Solution
    Given equation: $${ cot }^{ -1 }(\sqrt { cos\alpha  } )-{ tan }^{ -1 }(\sqrt { cos\alpha  } )=x$$

    $$let\quad { cot }^{ -1 }(\sqrt { cos\alpha  } )=P$$

    $$ \Longrightarrow cotP=\sqrt { cos\alpha  } $$

    $$ \Longrightarrow sinP=\dfrac { 1 }{ \sqrt { 1+cos\alpha  }  } $$

    Also $${ tan }^{ -1 }(\sqrt { cos\alpha  } )=Q$$

    $$ \Longrightarrow tanQ=\sqrt { cos\alpha  } $$

    $$ \Longrightarrow sinQ=\dfrac { \sqrt { cos\alpha  }  }{ \sqrt { 1+cos\alpha  }  } $$

    Now the given equation can be written as
     
    $$ x=P-Q$$

    $$ sinx=sin(P-Q)$$

    $$ sinx=sinPcosQ-cosPsinQ$$

    $$ sinx=\left( \dfrac { 1 }{ \sqrt { 1+cos\alpha  }  }  \right) \left( \dfrac { 1 }{ \sqrt { 1+cos\alpha  }  }  \right) -\left( \dfrac { \sqrt { cos\alpha  }  }{ \sqrt { 1+cos\alpha  }  }  \right) \left( \dfrac { \sqrt { cos\alpha  }  }{ \sqrt { 1+cos\alpha  }  }  \right) $$

    $$sinx=\dfrac { 1-cos\alpha  }{ 1+cos\alpha  } =\dfrac { 2{ sin }^{ 2 }\dfrac { \alpha  }{ 2 }  }{ 2{ cos }^{ 2 }\dfrac { \alpha  }{ 2 }  } \\ sinx={ tan }^{ 2 }\dfrac { \alpha  }{ 2 }$$ 

    Hence option (a) is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now