Self Studies

Inverse Trigonometric Functions Test - 40

Result Self Studies

Inverse Trigonometric Functions Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sec\ h^{-1}\left(\dfrac{1}{5}\right)$$=
    Solution
    We have,
    $$\sec h^{-1}\left (\dfrac {1}{5}\right)$$
    We know that,
     $$\sec h^{-1}x=\log \left (\dfrac {1}{x}+\sqrt {\dfrac {1}{x^{2}}1}\right)$$
    Now,
    $$\sec ^{ -1 }{ \dfrac { 1 }{ 5 }  } =\log { \left( \dfrac { 1 }{ \dfrac { 1 }{ 5 }  } +\sqrt { \dfrac { 1 }{ { \left( \dfrac { 1 }{ 5 }  \right)  }^{ 2 } } -1 }  \right)  }$$ 
    $$=\log { \left( 5+\sqrt { 25-1 }  \right)  } $$
    $$=\log { \left( 5+\sqrt { 24 }  \right)  } $$
    Hence this is the answer.
  • Question 2
    1 / -0
    If $$\cot \dfrac {2x}{3}+\tan \dfrac {x}{3}=\csc \dfrac {x}{3}$$ then value of $$\tan^{-1(\tan k)}$$ equals
    Solution

  • Question 3
    1 / -0
    If $$f ( x ) = \sqrt { \sec ^ { - 1 } \left( \frac { 2 - | x | } { 4 } \right) } ,$$ then the domain of $$f ( x )$$ is ______________.
  • Question 4
    1 / -0
    The value of $${ sin }^{ -1 }(sin12)+{ cos }^{ -1 }(cos12)$$ is equal to :
    Solution
    Given,

    $$\sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)$$

    The principle values,

    $$\sin ^{-1}x\in \left [ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right ],\forall x\in [-1,1]$$

    $$\cos ^{-1}x\in \left [0,\pi \right ],\forall x\in [-1,1]$$

    $$\therefore \sin ^{-1}(\sin 12)\neq 12\notin \left [ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right ]$$

    $$\therefore \cos ^{-1}(\cos 12)\neq 12\notin \left [ 0,\pi \right ]$$

    $$\therefore \sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)$$

    $$=\sin ^{-1}(\sin (12-4\pi ))+\cos ^{-1}(\cos (4\pi -12))$$

    $$=(12-4\pi ) + (4\pi -12)$$

    $$=0$$

    $$\therefore \sin ^{-1}(\sin 12)+\cos ^{-1}(\cos 12)=0$$
  • Question 5
    1 / -0
    $$\displaystyle \sum _{ r=1 }^{ n }{ { tan }^{ -1 } } \left(\dfrac { { 2 }^{ r-1 } }{ 1+{ 2 }^{ 2r-1 } } \right)$$ is equal to :
    Solution
    $$\displaystyle\sum ^{n}_{r=1}\text{tan}^{-1}\bigg(\dfrac{2^{r-1}}{1+2^{2 r-1}}\bigg)=\sum^{n}_{r=1}\text{tan}^{-1}\bigg(\dfrac{2^{r-1}(2-1)}{1+2^r.2^{r-1}}\bigg)$$

                                               $$=\displaystyle\sum^{n}_{r=1}\text{tan}^{-1}\bigg(\dfrac{2^r-2^{r-1}}{1+2^r.2^{r-1}}\bigg)$$

                                               $$=\displaystyle\sum^{n}_{r=1}\text{tan}^{-1}{2^r}-\text{tan}^{-1}(2^{r-1})$$

                                               $$=\text{tan}^{-1} 2-\text{tan}^{-1}1+\text{tan}^{-1}2^2-\text{tan}^{-1}2^1+\cdots+\text{tan}^{-1}{2^n}-\text{tan}^{-1}2^{n-1}$$

                                               $$=\text{tan}^{-1}(2^n)-\dfrac{\pi}{4}$$
  • Question 6
    1 / -0
    If $$3{\tan ^{ - 1}}\left( {\frac{1}{{2 + \sqrt 3 }}} \right) - {\tan ^{ - 1}}\frac{1}{x} = {\tan ^{ - 1}}\frac{1}{3}$$ then $$x = $$
    Solution
    Let $$y=\text{tan}^{-1} \bigg(\dfrac{1}{2+\sqrt{3}}\bigg)\implies \tan y=\dfrac{1}{2+\sqrt{3}}$$

    $$\tan 3 y=\dfrac{3\tan y-\tan^3 y}{1+3\tan^2 y}=\dfrac{\frac{1}{2+\sqrt{3}}(3-\frac{1}{(2+\sqrt{3})^2})}{1+\frac{3}{(2+\sqrt{3})^2}}=\dfrac{\frac{1}{2+\sqrt{3}}(20+12\sqrt{3})}{4+4\sqrt{3}}=\dfrac{20+12\sqrt{3}}{20+12\sqrt{3}}=1$$

    $$\implies 3\text{tan}^{-1}\bigg(\dfrac{1}{2+\sqrt{3}}\bigg)=\text{tan}^{-1}(1)$$

    $$\text{tan}^{-1}\bigg(\dfrac{1}{x}\bigg)=\text{tan}^{-1}(1)-\text{tan}^{-1}\dfrac{1}{3}=\text{tan}^{-1}\dfrac{1-\dfrac{1}{3}}{1+\dfrac{1}{3}}=\dfrac{1}{2}$$

    $$\implies x=2$$
  • Question 7
    1 / -0
    For $$0<x<1$$ the value of $$\cos^{-1}x+\cos^{-1}(-x)=?$$
    Solution
    We've for $$|x|\le 1$$, $$\cos^{-1} (-x)=\pi -\cos^{-1}x$$.

    It also holds in this case.

    So for $$0<x<1$$ we've,

    $$\cos^{-1}x+\cos^{-1} (-x)$$

    $$=\cos^{-1} x+\pi-\cos^{-1}x$$

    $$=\pi$$.
  • Question 8
    1 / -0
    The value of $$\sin\ h(\cos\ h^{-1}x)$$ is 
  • Question 9
    1 / -0
    The value of $$\displaystyle \sum_{r=0}^{\infty}{ tan}^{1}\left(\dfrac{1}{1+r+{r}^{2}}\right)$$  is equal to
    Solution
    given, $$\displaystyle\sum^{\infty}_{r=0}\tan^{-1}\left(\dfrac{1}{1+r+r^2}\right)$$

    Consider $$\tan^{-1}\left(\dfrac{1}{1+r+r^2}\right)=\tan^{-1}\left(\dfrac{1}{1+r(r+1)}\right)$$

    $$=\tan^{-1}\left(\dfrac{(r+1)-r}{1+(r+1)r}\right)=\tan^{-1}(r+1)-\tan^{-1}r$$

    G.E$$=\displaystyle\sum^{\infty}_{r=0}\tan^{-1}(r+1)-\tan^{-1}(r)$$

    $$=\tan^{-1}1-\tan^{-1}0+\tan^{-1}2-\tan^{-1}1+...…+\tan^{-1}\infty$$

    $$=\tan^{-1}\infty -\tan^{-1}0$$

    $$=\dfrac{\pi}{2}-0$$

    $$=\dfrac{\pi}{2}$$.
  • Question 10
    1 / -0
    The simplified form of $${ cos }^{ -1 }\left( \frac { 3 }{ 5 } { cos }x+\frac { 4 }{ 5 } { sin }x \right) $$ is :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now