Given, $$\tan{\left({\cos}^{-1}{\dfrac{3}{5}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$
Let, $${\cos}^{-1}{\dfrac{3}{5}}=a$$
$$\Rightarrow\,\cos{a}=\dfrac{3}{5}$$
$$\Rightarrow\,{\sin}^{2}{a}=1-{\cos}^{2}{a}=1-\dfrac{9}{25}=\dfrac{25-9}{25}=\dfrac{16}{25}$$
$$\therefore\,\sin{a}=\dfrac{4}{5}$$
$$\Rightarrow\,\tan{a}=\dfrac{\sin{a}}{\cos{a}}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$$
$$\Rightarrow\,a={\tan}^{-1}{\dfrac{4}{3}}$$
$$\therefore\,\tan{\left({\cos}^{-1}{\dfrac{3}{5}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$
$$=\tan{\left(a+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$ where $$a={\cos}^{-1}{\dfrac{3}{5}}$$
$$=\tan{\left({\tan}^{-1}{\dfrac{4}{3}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$ where $$a={\cos}^{-1}{\dfrac{3}{5}}={\tan}^{-1}{\dfrac{4}{3}}$$
We know that $${\tan}^{-1}{A}+{\tan}^{-1}{B}={\tan}^{-1}{\left(\dfrac{A+B}{1-AB}\right)}$$
$$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{4}{3}+\dfrac{1}{4}}{1-\dfrac{4}{3}\times\dfrac{1}{4}}\right)}\right)}$$
$$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{16+3}{12}}{1-\dfrac{4}{12}}\right)}\right)}$$
$$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{19}{12}}{\dfrac{12-4}{12}}\right)}\right)}$$
$$=\tan{\left({\tan}^{-1}{\dfrac{19}{8}}\right)}$$
$$=\dfrac{19}{8}$$