Self Studies

Inverse Trigonometric Functions Test - 44

Result Self Studies

Inverse Trigonometric Functions Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\tan (2\cos ^{-1}\frac 35)=$$_____
    Solution
    Given,

    $$\tan \left(2\cos ^{-1}\left(\frac{3}{5}\right)\right)$$

    as $$\tan \left(2x\right)=\dfrac{2\tan \left(x\right)}{1-\tan ^2\left(x\right)}$$

    $$=\dfrac{2\tan \left(\cos  ^{-1} \left(\frac{3}{5}\right)\right)}{1-\tan ^2\left(\cos ^{-1} \left(\frac{3}{5}\right)\right)}$$

    as $$\tan \left(\cos  ^{-1}\left(x\right)\right)=\frac{\sqrt{1-x^2}}{x}$$

    $$=\dfrac{2\left(\frac{\sqrt{1-\left(\frac{3}{5}\right)^2}}{\left(\frac{3}{5}\right)}\right)}{1-\left(\frac{\sqrt{1-\left(\frac{3}{5}\right)^2}}{\left(\frac{3}{5}\right)}\right)^2}$$

    $$=\dfrac{2\cdot \frac{5\sqrt{-\left(\frac{3}{5}\right)^2+1}}{3}}{1-\left(\frac{5\sqrt{-\left(\frac{3}{5}\right)^2+1}}{3}\right)^2}$$

    $$=\dfrac{2\cdot \frac{5\sqrt{-\left(\frac{3}{5}\right)^2+1}}{3}}{1-\frac{4^2}{3^2}}$$

    $$=\dfrac{\frac{8}{3}}{1-\frac{4^2}{3^2}}$$

    $$=\dfrac{8}{3\left(1-\frac{16}{9}\right)}$$

    $$=-\dfrac{8}{\frac{7}{3}}$$

    $$=-\dfrac{24}{7}$$
  • Question 2
    1 / -0
    The solution set of the equation$$2 cos^{ -1 } x = cot^{ -1 } \left(\dfrac { 2x^{ 2 } - 1 }{ 2x \sqrt { 1 x^{ 2 } } }\right) $$ is
    Solution

  • Question 3
    1 / -0
    If $$\;\sin {\;^{ - 1}}\dfrac{1}{x} = 2\;{\tan ^{ - 1}}\dfrac{1}{7} + {\cos ^{ - 1}}\dfrac{3}{5}$$, then $$x =$$ ___
    Solution
    $$2\tan ^{-1}\left(\dfrac{1}{7}\right)+\cos ^{-1}\left(\dfrac{3}{5}\right)$$
    $$=\tan ^{-1}\left(\dfrac{1}{7}\right)+\tan ^{-1}\left(\dfrac{1}{7}\right)+\cos ^{-1}\left(\dfrac{3}{5}\right)$$
    $$=\tan ^{-1}\left(\dfrac{\dfrac{1}{7}+\dfrac{1}{7}}{1-\dfrac{1}{7}\times \dfrac{1}{7}}\right)+\cos ^{-1}\left(\dfrac{3}{5}\right)$$   $$\left[\because \tan ^{-1}+\tan ^{-1}y \tan ^{-1x}=\tan ^{-1}\left(\dfrac{x+y}{1-xy}\right)\right]$$
     $$=\tan ^{-1}\left(\dfrac{\dfrac{2}{7}}{1-\dfrac{1}{49}}\right)+\theta$$
    $$=\tan ^{-1}\left(\dfrac{7}{24}\right)+\tan ^{-1}\left(\dfrac{4}{3}\right)$$
    $$=\tan ^{-1}\left(\dfrac{\dfrac{7}{24}+\dfrac{4}{3}}{1-\dfrac{7}{24}\times \dfrac{4}{3}}\right)$$
    $$=\tan ^{-1}\left(\dfrac{117}{44}\right)$$
    $$\because \sin ^{-1}\left(\dfrac{1}{x}\right)=\tan ^{-1}\left(\dfrac{117}{44}\right)$$
    Let $$\theta =\tan ^{-1}\left(\dfrac{117}{44}\right)$$
    $$\therefore \tan \theta=\dfrac{117}{44}$$
    $$\therefore \sin \theta=\dfrac{117}{\sqrt{117^2+44^2}}=\dfrac{117}{125}$$
    $$\therefore \theta =\sin ^{-1}\left(\dfrac{117}{125}\right)$$
    $$\therefore \sin ^{-1}\left(\dfrac{1}{x}\right)=\sin ^{-1}\left(\dfrac{117}{125}\right)$$
    On comparing 
    $$\dfrac{1}{x}=\dfrac{117}{125}$$
    $$\boxed{\therefore x=\dfrac{125}{117}}$$

  • Question 4
    1 / -0
    If $$\alpha =\cos^{-1}\left(\dfrac{3}{5}\right),\beta=\tan^{-1}\left(\dfrac{1}{3}\right)$$ where $$0<\alpha,beta <\dfrac{\pi}{2},$$then $$\alpha -\beta $$ is equal to :
    Solution
    $$\cos \alpha=\dfrac{3}{5},\tan \beta =\dfrac{1}{5}$$
    $$\Rightarrow \tan \alpha =\dfrac{4}{3}$$
    $$\Rightarrow (\alpha-\beta)=\dfrac{\dfrac{4}{3}-\dfrac{1}{3}}{1+\dfrac{4}{3}.\dfrac{1}{3}}=\dfrac{9}{3}$$
    $$\Rightarrow \sin(\alpha-\beta)=\dfrac{9}{5\sqrt{10}}$$
    $$\Rightarrow \alpha-\beta =\sin^{-1}\left(\dfrac{9}{5\sqrt{10}}\right)$$
  • Question 5
    1 / -0
    If $$\cos ^{ -1 }{ x } -\cos ^{ -1 }{ \cfrac { y }{ 2 }  } =\alpha $$ where $$-1-1\le x\le 1,-2\le y\le 2,x\le \cfrac { y }{ 2 } $$ then for all $$4{ x }^{ 2 }-4xy\cos { \alpha  } +{ y }^{ 2 }$$ is equal to
    Solution
    $$\cos { \left( \cos ^{ -1 }{ x } -\cos ^{ -1 }{ \cfrac { y }{ 2 }  }  \right)  } =\cos { \alpha  } $$
    $$\cos { \alpha  } \Rightarrow x\times \cfrac { y }{ 2 } +\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-\cfrac { { y }^{ 2 } }{ 4 }  } \Rightarrow { \left( \cos { \alpha  } -\cfrac { xy }{ 2 }  \right)  }^{ 2 }=\left( 1-{ x }^{ 2 } \right) \left( 1-\cfrac { { y }^{ 2 } }{ 4 }  \right) $$
    $${ x }^{ 2 }+\cfrac { { y }^{ 2 } }{ 4 } -xy\cos { \alpha  } =1-\cos ^{ 2 }{ \alpha  } =\sin ^{ 2 }{ \alpha  } \quad $$
  • Question 6
    1 / -0
    The value of $$tan \left (\cos^{-1} \dfrac {3}{5} + \tan^{-1} \dfrac {1}{4}\right )$$ is
    Solution
    Given, $$\tan{\left({\cos}^{-1}{\dfrac{3}{5}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$

    Let, $${\cos}^{-1}{\dfrac{3}{5}}=a$$

    $$\Rightarrow\,\cos{a}=\dfrac{3}{5}$$

    $$\Rightarrow\,{\sin}^{2}{a}=1-{\cos}^{2}{a}=1-\dfrac{9}{25}=\dfrac{25-9}{25}=\dfrac{16}{25}$$

    $$\therefore\,\sin{a}=\dfrac{4}{5}$$

    $$\Rightarrow\,\tan{a}=\dfrac{\sin{a}}{\cos{a}}=\dfrac{\dfrac{4}{5}}{\dfrac{3}{5}}=\dfrac{4}{3}$$

    $$\Rightarrow\,a={\tan}^{-1}{\dfrac{4}{3}}$$

    $$\therefore\,\tan{\left({\cos}^{-1}{\dfrac{3}{5}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$

    $$=\tan{\left(a+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$ where $$a={\cos}^{-1}{\dfrac{3}{5}}$$

    $$=\tan{\left({\tan}^{-1}{\dfrac{4}{3}}+{\tan}^{-1}{\dfrac{1}{4}}\right)}$$ where $$a={\cos}^{-1}{\dfrac{3}{5}}={\tan}^{-1}{\dfrac{4}{3}}$$

    We know that $${\tan}^{-1}{A}+{\tan}^{-1}{B}={\tan}^{-1}{\left(\dfrac{A+B}{1-AB}\right)}$$

    $$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{4}{3}+\dfrac{1}{4}}{1-\dfrac{4}{3}\times\dfrac{1}{4}}\right)}\right)}$$

    $$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{16+3}{12}}{1-\dfrac{4}{12}}\right)}\right)}$$

    $$=\tan{\left({\tan}^{-1}{\left(\dfrac{\dfrac{19}{12}}{\dfrac{12-4}{12}}\right)}\right)}$$

    $$=\tan{\left({\tan}^{-1}{\dfrac{19}{8}}\right)}$$

    $$=\dfrac{19}{8}$$
  • Question 7
    1 / -0
    The value of $$\tan^{-1}\dfrac{1}{3}+\tan^{-1}\dfrac{1}{5}+\tan^{-1}\dfrac{1}{7}+\tan^{-1}\dfrac{1}{8}$$ is ___________.
    Solution
    $$\tan^{-1} \left (\dfrac{1}{3} \right ) + \tan^{-1} \left (\dfrac{1}{5} \right ) + \tan^{-1} \left (\dfrac{1}{7} \right ) + \tan^{-1} \left (\dfrac{1}{8} \right ) $$ 

    $$ = \tan^{-1} \left (\dfrac{\dfrac{1}{3} + \dfrac{1}{5}}{1 - \dfrac{1}{15}} \right ) + \tan^{-1} \left (\dfrac{\dfrac{1}{7} + \dfrac{1}{8}}{1 - \dfrac{1}{56}} \right ) $$ 

    $$= \tan^{-1} \left (\dfrac{\dfrac{8}{15}}{\dfrac{14}{15}} \right ) + \tan^{-1} \left (\dfrac{\dfrac{15}{56}}{\dfrac{55}{56}} \right ) $$

    $$ = \tan^{-1} \left (\dfrac{8}{14} \right ) + \tan^{-1} \left (\dfrac{15}{55} \right )$$

    $$ = \tan^{-1} \left (\dfrac{4}{7} \right ) + \tan^{-1} \left (\dfrac{3}{11} \right )$$

    $$= \tan^{-1} \left (\dfrac{\dfrac{4}{7} + \dfrac{3}{11}}{1 - \dfrac{12}{77}} \right ) $$

    $$= \tan^{-1} \left (\dfrac{\dfrac{65}{77}}{\dfrac{65}{77}} \right )$$

    $$ = \tan^{-1} (1)$$

    $$ = \tan^{-1} \left (\tan \dfrac{\pi}{4} \right )$$

    $$= \dfrac{\pi}{4}$$
  • Question 8
    1 / -0
    $$\tan \left [2\tan^{-1}\dfrac {1}{5}-\dfrac {\pi}{4}\right]=$$ ?
    Solution
    Let $$2\tan^{-1}\dfrac {1}{5}=\theta$$. 

    Then, $$\tan^{-1}\dfrac {1}{5}=\dfrac {1}{2}\theta \Rightarrow \tan \dfrac {\theta}{2} =\dfrac {1}{5}$$

    $$\therefore \ \tan \theta =\dfrac {2\tan \dfrac {1}{2}\theta}{1-\tan^2 \dfrac {1}{2}\theta}=\dfrac {\left(2\times \dfrac {1}{5}\right)}{\left(1-\dfrac {1}{25}\right)}=\left (\dfrac {2}{5}\times \dfrac {25}{24}\right)=\dfrac {5}{12}$$

    $$\therefore \ \tan \left [2\tan^{-1}\dfrac {1}{5}-\dfrac {\pi}{4}\right]=\tan \left (\theta -\dfrac {\pi}{4}\right)=\dfrac {\tan \theta -\tan \dfrac {\pi}{4}}{1+\tan \theta \cdot \tan \dfrac {\pi}{4}}=\dfrac {\left (\dfrac {5}{12}-1\right)}{\left(1+\dfrac {5}{12}\times 1\right)}=\dfrac {\left (\dfrac {-7}{12}\right)}{\left (\dfrac {17}{12}\right)}=\dfrac {-7}{17}$$
  • Question 9
    1 / -0
    $$\sin \left (\cos^{-1}\dfrac {3}{5}\right)=$$ ?
    Solution

  • Question 10
    1 / -0
    The value of $$\sin \left (\sin^{-1}\dfrac {1}{2}+\cos^{-1}\dfrac {1}{2}\right)=$$?
    Solution
    As we know that, $$\sin^{-1} x +\cos^{-1}x=\dfrac {\pi}{2},\,x\in[-1,1]$$

    $$ \sin \left (\sin^{-1}\dfrac {1}{2}+\cos^{-1}\dfrac {1}{2}\right)=\sin \dfrac {\pi}{2}=1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now