Self Studies

Inverse Trigonometric Functions Test - 48

Result Self Studies

Inverse Trigonometric Functions Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$|x| \le 1$$, then $$2 \tan ^{-1}x +\sin ^{-1} \left(\dfrac{2x}{1+x^2} \right)$$ is equal to 
    Solution
    We have,$$|x| \le 1$$, then $$2 \tan ^{-1}x +\sin ^{-1} \left(\dfrac{2x}{1+x^2} \right)$$ 

    Let $$x=\tan \theta$$
    $$2 \tan^{-1} \tan \theta +\sin^{-1}\dfrac{2 \tan \theta}{1+ \tan^2 \theta}$$$$[\because \tan^{-1}(\tan x)=x]$$
    $$2 \theta +\sin^{-1} \sin 2 \theta \ \left[\because \sin 2 \theta =\dfrac{2 \tan \theta}{1+ \tan^2 \theta}\right]$$

    $$2 \theta +2 \theta \left[\because \sin^{-1} (\sin x)=x \right] $$
    $$4 \theta  \left[\because \theta \tan^{-1} \right]4 \tan^{-1} x$$
  • Question 2
    1 / -0
    The value of the expression $$2 \sec ^{-1}2+ \sin^{-1}\left(\dfrac{1}{2}\right)$$ is
    Solution
    We have $$2 \sec ^{-1}2+ \sin^{-1}\left(\dfrac{1}{2}\right)$$
    $$2 \sec^{-1}(\sec \dfrac{\pi}{3})+\sin^{-1}(\sin \dfrac{\pi}{6})$$
    $$=2.\dfrac{\pi}{3}+\dfrac{\pi}{6} \ \ [\because \sec^{-1} (\sec x)=x$$  and  $$\sin^{-1} (\sin x)=x]$$
    $$=\dfrac{4 \pi+\pi}{6}=\dfrac{5\pi}{6}$$
  • Question 3
    1 / -0
    The value of $$\cot  (\sin^{-1}x)$$ is 
    Solution
    (D) is the correct answer. 

    Let $$\sin^{-1}x=\theta $$ , 
    Then $$\sin \theta =x$$
    $$\Rightarrow \csc \theta =\dfrac 1x $$
    $$\Rightarrow \csc^2 \theta =\dfrac {1}{x^2}$$
    $$\Rightarrow 1+\cot^2\theta =\dfrac {1}{x^2}$$
    $$\Rightarrow \cot \theta =\dfrac {\sqrt{1-x^2}}{x}$$
  • Question 4
    1 / -0
    The value of $$ \sin^{-1}\left\{\cos \left( \dfrac{43\pi}{5}\right)\right\}$$ is 
    Solution
    (D) is the correct answer.

    We have 
    $$\sin^{-1}\left( \cos \dfrac{40\pi +3\pi}{5}\right)$$
    $$=\sin^{-1}\left\{\cos \left( 8\pi+\dfrac{3\pi}{5}\right\}\right\}$$ 
    $$=\sin^{-1}\left( \cos \dfrac{3\pi}{5}\right)$$
    $$=\sin^{-1}\left\{ \sin \left( \dfrac {\pi}{2}-\dfrac{3\pi}{5}\right)\right\}$$
    $$=\sin^{-1}\left( \sin \left( -\dfrac{\pi}{10}\right)\right)$$
    $$=-\dfrac{\pi}{10}$$
  • Question 5
    1 / -0
    The domain of the function defined by $$f(x)=\sin^{-1}x+\cos x$$ is 
    Solution
    (A) is the correct answer. 

    The domain of $$\cos x$$ is $$R$$ and the domain of $$\sin^{-1}$$ is $$[-1, 1]$$.
    $$\therefore$$  The domain of $$f(x)=\cos x+\sin^{-1}x$$ is $$R \cap [-1, 1]$$ i.e., $$[-1, 1]$$
  • Question 6
    1 / -0
    If $$\sin^{-1}x+\sin^{-1}y=\dfrac{\pi}{2}$$, then the value of $$\cos^{-1}x+\cos^{-1}y$$ is 
    Solution
    (A) is the correct answer. 

    Given $$\sin^{-1}x+\sin^{-1}y=\dfrac{\pi}{2}$$
    We know that $$\sin^{-1}x+\cos^{-1}y=\dfrac{\pi}{2}$$
    $$\therefore\ \cos^{-1}x+\cos^{-1}y\\=\left( \dfrac {\pi}{2}-\sin^{-1}x\right) + \left( \dfrac {\pi}{2}-\sin^{-1}y \right) \\=\pi-(\sin^{-1}x+\sin^{-1}y)\\=\pi-\dfrac {\pi}{2}=\dfrac {\pi}{2}$$

    Hence, $$ \cos^{-1}x+\cos^{-1}y=\dfrac {\pi}{2}$$.
  • Question 7
    1 / -0
    If $$\tan^{-1}x=\dfrac{\pi}{10}$$ for some $$x\in R$$, then the value of $$\cot^{-1}x$$ is 
    Solution
    (B) is the correct answer. 

    We know that
    $$\tan^{-1}x+\cot^{-1}x=\dfrac{\pi}{2}$$. 
    $$\Rightarrow \cot^{-1}x=\dfrac {\pi}{2}-\tan^{-1}x$$
    $$\Rightarrow \cot^{-1}x=\dfrac{\pi}{2}-\dfrac{\pi}{10}=\dfrac{4\pi}{10}=\dfrac{2\pi}{5}$$
  • Question 8
    1 / -0
    The value of the expression $$\sin [ \cot^{-1}\{ \cos (\tan^{-1}1)\}]$$ is 
    Solution
    (D) is the correct answer.

    Let $$P=\sin [ \cot^{-1}\{ \cos (\tan^{-1}1)\}]$$
    $$\\=\sin \left[ \cot^{-1}\left( \cos \dfrac {\pi}{4}\right) \right] \qquad\left[\because \tan^{-1}1=\dfrac{\pi}4\right]\\=\sin \left[ \cot^{-1}\dfrac{1}{\sqrt 2}\right]  \qquad\left[\because \cos\dfrac{\pi}4=\dfrac1{\sqrt2}\right]\\$$

    Let, $$\cot^{-1}\dfrac1{\sqrt2}=y\Rightarrow \cot y=\dfrac1{\sqrt2}$$
    $$\\ \Rightarrow \sin y=\sqrt{\dfrac23}\Rightarrow y=\sin^{-1}\sqrt{\dfrac23}$$

    $$\therefore P=\sin \left[ \sin^{-1}\sqrt{\dfrac 23}\right] =\sqrt{\dfrac 23}$$
  • Question 9
    1 / -0
    If $$\alpha \le 2\sin^{-1}x+\cos^{-1}x \le \beta$$, then 
    Solution
    (B) is the correct answer.

    We know that
    $$\dfrac {-\pi}{2}\le \sin^{-1}x \le \dfrac {\pi}{2}\\$$
    $$\Rightarrow \dfrac {-\pi}{2}+\dfrac {\pi}{2} \le \sin^{-1}x + \dfrac {\pi}{2} \le \dfrac {\pi}{2}+\dfrac {\pi}{2}\qquad [$$Addidng $$\dfrac{\pi}2 ]$$
    $$\\\Rightarrow 0 \le \sin^{-1}x+ (\sin^{-1}x+\cos^{-1}x) \le \pi\qquad\left[\because(\sin^{-1}x+\cos^{-1}x)= \dfrac{\pi}2 \right]\\$$
     $$\Rightarrow 0 \le 2\sin^{-1}x+\cos^{-1}x \le \pi$$
  • Question 10
    1 / -0
    The domain of $$y=\cos^{-1}(x^2-4)$$ is 
    Solution
    (D) is the correct answer.

    Given $$y=\cos^{-1}(x^2-4) \Rightarrow \cos y =x^2-4$$
    $$\therefore \ -1 \le x^2 -4 \le 1 $$    ( since $$-1 \le \cos y \le 1)$$
    $$\Rightarrow 3 \le x^2 \le 5$$
    $$\Rightarrow \sqrt 3 \le |x| \le \sqrt 5$$
    $$\Rightarrow x \in [ -\sqrt 5, -\sqrt 3] \cup [ \sqrt 3, \sqrt 5]$$

    Hence the domain of $$y $$ is $$[ -\sqrt 5, -\sqrt 3] \cup [ \sqrt 3, 5]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now