Self Studies

Inverse Trigonometric Functions Test - 51

Result Self Studies

Inverse Trigonometric Functions Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Assertion(A): $$\cos^{-1}x$$ and $$\tan^{-1}x$$ are positive for all positive real values of $$x$$ in their domain.
    Reason(R): The domain of $$f(x)=\cos^{-1}x+\tan^{-1}x$$ is $$[-1, 1].$$
    Solution
    Assertion : 

    $$ \cos ^ {-1} x$$ range is $$  \left[0,\pi \right]$$ and domain is $$[-1,1]$$
    $$\therefore \,\cos^{-1}x>0\,$$ for all $$x>0$$

    $$ \tan ^ {-1} x $$ range is $$ \left(\dfrac{ -\pi }2 ,\dfrac \pi 2\right) $$ and range is $$R$$
    $$ \forall x >0 \implies \tan  ^ {-1} x >0$$


    Reason : 
    The domain of $$ \cos ^ {-1}  x $$ is $$ [-1,1]$$

    The domain of $$ \tan ^ {-1}  x $$ is $$R$$ 

    So The domain of $$ \cos ^ {-1}x +\tan ^ {-1}x  $$ is $$ R \cap [-1,1]$$ 

    $$\implies [-1,1]$$ 
  • Question 2
    1 / -0
    The number of solutions of:
    $$\displaystyle \sin^{-1}(1+b+b^{2}+\ldots.\infty)+\cos^{-1}(a-\frac{a^{2}}{3}+\frac{a^{3}}{9}+\ldots\infty)=\frac{\pi}{2}$$
    Solution
    As $$\displaystyle \sin ^{ -1 }{ \theta  } $$ are defined for $$\displaystyle  \theta \in \left[ -1,1 \right] $$
    $$\therefore$$ For $$\displaystyle \sin ^{ -1 }{ \left( 1+b+{ b }^{ 3 }+...\infty  \right)  }$$
    $$ \left| b \right| <1$$
    Hence $$\displaystyle 1,b,{ b }^{ 2 },...\infty $$ is $$G.P.$$ of common ratio $$b$$
    $$\displaystyle \therefore 1+b+{ b }^{ 2 }+...+\infty =\frac { 1 }{ 1-b } $$
    Similarly for $$\displaystyle \cos ^{ -1 }{ \left( a-\frac { { a }^{ 2 } }{ 3 } +\frac { { a }^{ 3 } }{ 9 } +...\infty  \right)  } $$
    $$\displaystyle\left| \frac { a }{ 3 }  \right| <1$$
    Hence $$\displaystyle 1,-\frac { { a }^{ 2 } }{ 3 } ,\frac { { a }^{ 3 } }{ 9 } ,...\infty $$ is $$G.P.$$ of common ration $$\displaystyle \left( \frac { -a }{ 3 }  \right) $$
    $$\displaystyle \therefore a-\frac { { a }^{ 2 } }{ 3 } +\frac { { a }^{ 3 } }{ 9 } +...\infty =\frac { a }{ 1+\frac { a }{ 3 }  } =\frac { 3a }{ 3+a } $$
    Now, as $$\displaystyle \sin ^{ -1 }{ \left( x \right)  } +\cos ^{ -1 }{ \left( x \right)  } =\frac { \pi  }{ 2 } $$
    $$\displaystyle \therefore \frac { 1 }{ 1-b } =\frac { 3a }{ 3+a } $$
    $$\displaystyle \Rightarrow 3+a=3a-3ab$$
    $$\displaystyle \Rightarrow 2a-3=3ab$$
    This has infinite solution.
  • Question 3
    1 / -0
    If $$(\tan^{-1}x)^{2}+(\cot^{-1}x)^{2} = \displaystyle \frac{5\pi^{2}}{8}$$, then $$x=$$
    Solution
    Let $$tan^{-1}x=y$$
    Therefore
    $$y^2+(\frac{\pi}{2}-y)^{2}=\frac{5\pi^2}{8}$$
    $$2y^2-\frac{2\pi y}{2}+\frac{\pi^2}{4}=\frac{5\pi^2}{8}$$
    $$2y^2-\pi y-\frac{3\pi^2}{8}=0$$
    $$y=\frac{-\pi}{4}$$ and $$y=\frac{3\pi}{4}$$
    Hence
    $$tan^{-1}(x)=\frac{-\pi}{4}$$
    $$x=-1$$ and
    $$tan^{-1}(x)=\frac{3\pi}{4}$$
    $$x=-1$$
    However only $$x=-1$$ satisfies the above quadratic equation.
  • Question 4
    1 / -0
    $$cos^{-1} \left (\sqrt{\dfrac{a-x}{a-b}} \right)$$ =$$sin^{-1} \left (\sqrt{\dfrac{x-b}{a-b}}\right)$$ is possible if
    Solution
    In $$\cos ^{-1}x , x \in [-1,1]$$

    In $$\sin ^{-1}x , x\in [-1,1]$$

    $$\displaystyle -1 \leq \sqrt{\frac{a-x}{a-b}} \leq 1$$

    $$\displaystyle 0 \leq \sqrt{\frac{a-x}{a-b}} \leq 1$$

    $$0 \leq a-x \leq a-b$$

    $$0\geq x-a \geq b-a$$ [on multiplying by (-ve) sing direction of equality changes]

    $$a \geq x\geq b$$
    and
    $$\displaystyle 0\leq \sqrt{\frac{x-b}{a-b}}\leq 1$$

    $$0\leq x-b \leq a-b$$

    $$b \leq x\leq a$$

    $$x\epsilon [b,a]$$
  • Question 5
    1 / -0
    If $$\sin^{-1}\alpha+\sin^{-1}\beta+\sin^{-1}\gamma =\displaystyle \frac{3\pi}{2}$$, then $$\alpha\beta+\alpha\gamma+\beta\gamma$$ is equal to :
    Solution
    The above expression is true for
    $$\alpha=1$$ , $$\beta=1$$ and $$\gamma=1$$
    Since $$\dfrac{-\pi}{2}\leq sin^{-1}(x) \leq \dfrac{\pi}{2}$$
    Hence
    $$\alpha\beta+\beta\gamma+\gamma\alpha$$
    $$=(1)+(1)+(1)$$
    $$=3$$
  • Question 6
    1 / -0
    The solution set of the equation $$\tan^{-1}x -\cot^{-1}x =\cos^{-1}(2-x)$$ is
    Solution
    Given, $$\tan ^{-1}x-\cot ^{-1}x=\cos ^{-1}(2-x) x\in [1,3]$$

    $$2\tan ^{-1}x-\dfrac{\pi }{2}=\cos ^{-1}(2-x)$$          $$\left[\because \tan ^{-1}x+\cot ^{-1}x=\dfrac{\pi }{2}\right]$$

    $$2 \tan ^{-1}x=\dfrac{\pi }{2}+\cos ^{-1}(2-x)$$

    Take $$\sin$$ on both sides, 

    $$\Rightarrow 2\dfrac{x}{(1+x^{2})}=2-x         \quad\quad........2\tan^{-1}x=sin^{-1}\dfrac{2x}{1+x^2}$$

    $$\Rightarrow x^3-2x^{2}+3x-2=0$$

    $$\Rightarrow x = 1$$

    So, set containing solution is $$[1,3)$$.
  • Question 7
    1 / -0
    The number of real solutions of $$tan^{-1} (\sqrt{x(x+1)}+sin^{-1} \displaystyle \sqrt{(x^{2}+x+1)}=\dfrac{\pi}{2}$$ is
    Solution
    From the above expression
    $$-1\leq\sqrt{x^2+x+1}\leq 1$$ and $$x(x+1)\geq 0$$
    $$\Rightarrow 0\le  x^2+x+1\le1 \,and \,x^2+x+1\ge1 $$
    $$\Rightarrow x^2+x+1=1$$
    $$\Rightarrow x^2+x=0$$
    $$\Rightarrow x(x+1)=0$$
    Hence there will be two solutions. One at $$x=-1$$ and another at$$ x=0$$.
  • Question 8
    1 / -0
    The number of positive integral solutions of the equation  $$tan^{-1}x+cot^{-1}y =tan^{-1} 3$$ is :
    Solution
    $$cot^{-1}y=tan ^{-1}3-tan ^{-1}x$$
    $$\displaystyle cot^{-1}y=tan ^{-1}(\dfrac{3-x}{1+3x})$$
    Take tan on both sides
    $$\displaystyle \dfrac{1}{y}=\dfrac{3-x}{1+3x}$$
    $$\displaystyle y=\dfrac{1+3x}{3-x} \Rightarrow y > 0$$
    Put $$x=0 , y=\dfrac{1}{3}$$
    $$\dfrac{1+3x}{3-x} > 0$$
    $$x=1 , y=2$$
    $$\dfrac{3x+1}{x=3} < 0$$
    $$x=2 , y=7$$                 
    $$x\epsilon (-\dfrac{1}{3} , 3)$$
    The integral values of $$x=0,1,2$$
  • Question 9
    1 / -0
    If $$(tan^{-1} x)^2 +(cot ^{-1}x)^2=\displaystyle \frac{5 \pi^2}{8}$$, then $$x$$ =
    Solution
    We have, $$tan^{-1}x + cot^{-1}x  =\displaystyle\frac{\pi}{2}$$

    The given equation can be written as : 
    $$\displaystyle (tan^{-1}x + cot^{-1}x)^2 - 2tan^{-1}x\left ( \frac{\pi}{2}-tan^{-1}x \right )=\frac{5 \pi^2}{8}$$

    $$\displaystyle 2(tan^{-1}x)^2 - 2\left ( \frac{\pi}{2} \right )tan^{-1}(x)- \frac{3 \pi ^2}{8}=0$$

    $$\displaystyle tan^{-1}x=-\frac{\pi}{4} or \frac{3\pi}{4}$$

    Hence, $$tan^{-1}x =1 $$
    $$x=-1$$
  • Question 10
    1 / -0
    The number of integral solutions of $$sin^{-1}\sqrt{4x-x^{2}-3}+tan^{-1}\sqrt{x^{2}-3x+2}=\frac{\pi }{2}$$ is


    Solution
    Given equation is $$\sin^{-1}\sqrt{4x-x^{2}-3}+\tan^{-1}\sqrt{x^{2}-3x+2}=\frac{\pi }{2}$$ 

    $$\tan^{ -1 }\sqrt { x^{ 2 }-3x+2 }=\displaystyle\frac { \pi  }{ 2 } -\sin^{ -1 }\sqrt { 4x-x^{ 2 }-3 } $$

    $$\Rightarrow \tan^{ -1 }\sqrt { x^{ 2 }-3x+2 } =\cos^{ -1 }\sqrt { 4x-x^{ 2 }-3 } $$

    Since, $$\sqrt { x^{ 2 }-3x+2 } \ge 0$$
    $$\Rightarrow \tan ^{ -1 }{ \sqrt { x^{ 2 }-3x+2 }  } <\dfrac { \pi  }{ 2 } $$

    Also, $$\sqrt { 4x-x^{ 2 }-3 } \ge 0$$
    $$\Rightarrow 0<\cos^{ -1 }\sqrt { 4x-x^{ 2 }-3 } \le \dfrac { \pi  }{ 2 } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now