As $$\displaystyle \sin ^{ -1 }{ \theta } $$ are defined for $$\displaystyle \theta \in \left[ -1,1 \right] $$
$$\therefore$$ For $$\displaystyle \sin ^{ -1 }{ \left( 1+b+{ b }^{ 3 }+...\infty \right) }$$
$$ \left| b \right| <1$$
Hence $$\displaystyle 1,b,{ b }^{ 2 },...\infty $$ is $$G.P.$$ of common ratio $$b$$
$$\displaystyle \therefore 1+b+{ b }^{ 2 }+...+\infty =\frac { 1 }{ 1-b } $$
Similarly for $$\displaystyle \cos ^{ -1 }{ \left( a-\frac { { a }^{ 2 } }{ 3 } +\frac { { a }^{ 3 } }{ 9 } +...\infty \right) } $$
$$\displaystyle\left| \frac { a }{ 3 } \right| <1$$
Hence $$\displaystyle 1,-\frac { { a }^{ 2 } }{ 3 } ,\frac { { a }^{ 3 } }{ 9 } ,...\infty $$ is $$G.P.$$ of common ration $$\displaystyle \left( \frac { -a }{ 3 } \right) $$
$$\displaystyle \therefore a-\frac { { a }^{ 2 } }{ 3 } +\frac { { a }^{ 3 } }{ 9 } +...\infty =\frac { a }{ 1+\frac { a }{ 3 } } =\frac { 3a }{ 3+a } $$
Now, as $$\displaystyle \sin ^{ -1 }{ \left( x \right) } +\cos ^{ -1 }{ \left( x \right) } =\frac { \pi }{ 2 } $$
$$\displaystyle \therefore \frac { 1 }{ 1-b } =\frac { 3a }{ 3+a } $$
$$\displaystyle \Rightarrow 3+a=3a-3ab$$
$$\displaystyle \Rightarrow 2a-3=3ab$$
This has infinite solution.