Self Studies

Inverse Trigonometric Functions Test - 52

Result Self Studies

Inverse Trigonometric Functions Test - 52
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$sin^{-1}(sin2010^{0})+cos^{-1}(cos2010^{0})+tan^{-1}(tan2010^{0})$$ is

    Solution
    $$2010^{0}$$
    $$=11\pi+\frac{\pi}{6}$$ ...(i)
    Hence
    $$sin^{-1}(sin(2010^{0}))=sin^{-1}(sin(11\pi+\frac{\pi}{6}))$$ ...(from(i))
    $$cos^{-1}(cos(2010^{0}))=cos^{-1}(cos(11\pi+\frac{\pi}{6}))$$
    $$tan^{-1}(tan(2010^{0}))=tan^{-1}(tan(11\pi+\frac{\pi}{6}))$$
    Therefore
    $$sin^{-1}(sin(11\pi+\frac{\pi}{6}))+cos^{-1}(cos(11\pi+\frac{\pi}{6}))+tan^{-1}(tan(11\pi+\frac{\pi}{6}))$$
    $$=-\frac{\pi}{6}+\pi-\frac{\pi}{6}+\frac{\pi}{6}$$
    $$=\frac{5\pi}{6}$$
  • Question 2
    1 / -0
    The number of solutions of the equation $$1+x^{2}+2x\, sin\: (cos^{-1}y)=0$$ is 
    Solution
    $$1+x^{2}+2x sin cos ^{1-}y=0$$

    $$\Rightarrow 1+x^{2}+2x\sqrt{1-y^{2}}=0$$

    $$x^{2}+2x\sqrt{1-y^{2}}+1=0$$

    $$x^{2}+2x\sqrt{1-y^{2}}+1-y^{2}=-y^{2}$$

    $$(x+\sqrt{1-y^{2}})=-y^{2} \Rightarrow -y^{2} \geq 0 $$

    $$x+\sqrt{1-y^{2}}=0 \space         and \space         y=0 (x+\sqrt{1-y^{2}})^{2} \geq 0$$

    $$\rightarrow y=0 , x=-1$$ only one solution

  • Question 3
    1 / -0
    The value of $$\displaystyle \sec^{-1}\left (\displaystyle \frac{1}{1-2x^{2}}\right)+4{\cos^{-1}}\sqrt{\displaystyle \frac{1+x}{2}}$$ is equal to
    Solution
    Given 

    $$\sec ^{-1} \left(\dfrac 1{1-2x^2}\right)+4\cos ^{-1}\sqrt {\dfrac {1+x}2}$$

    Let $$ x=\cos \theta $$

    $$\implies \sec ^{-1} \dfrac 1{1-2\cos ^2 x} +4\cos ^{-1}\left( \sqrt {\dfrac {1+\cos \theta }2}\right)$$

    $$= \sec ^{-1}\left( \dfrac {-1}{\cos 2\theta }\right) +4\cos ^{-1} (\sqrt {\cos ^2\theta /2})$$

    $$ =\pi -\sec ^{-1} (\sec 2\theta )+4 \cos ^{-1} (\cos \theta/2)$$

    $$ =\pi -2\theta +4 \left(\dfrac \theta 2\right)$$

    $$=\pi -2\theta +2\theta$$

    $$=\pi $$ 
  • Question 4
    1 / -0
    The value of $$\sin^{-1}$$$$\left \{ \tan\left ( \cos^{-1}\sqrt{\dfrac{2+\sqrt{3}}{4}}+\cos^{-1}\dfrac{\sqrt{12}}{4} -\text{cosec}^{-1}\sqrt{2}\right ) \right \}$$, is
    Solution
    Given:
    $$E = \sin^{-1} \left(\tan \left(\cos^{-1} \dfrac {\sqrt {2 + \sqrt {3}}}{2} + \cos^{-1} \dfrac {\sqrt 3}{2} - \text{cosec}^{-1} \sqrt 2\right) \right)$$

    We know that,
    $$\cos 15^0 = \sqrt{\dfrac{2+\sqrt3}{4}}$$

    Therefore,
    $$\Rightarrow E= \sin^{-1} (\tan (15^0 + 30^0 - 45^0))$$
    $$\Rightarrow E= \sin^{-1} (\tan0^0)$$
    $$\Rightarrow E = \sin^{-1} 0 = 0$$
  • Question 5
    1 / -0
    If $$x> 0\, $$ and $$\, cos^{-1}\left ( \dfrac{12}{x} \right )+cos^{-1}\left ( \dfrac{35}{x} \right )=\dfrac{\pi }{2},$$ then x is
    Solution
    $$cos^{-1}(a)+cos^{-1}(b)=\dfrac{\pi}{2}$$
    $$\Rightarrow cos^{-1}(a)=\dfrac{\pi}{2}-cos^{-1}(b)$$
    $$\Rightarrow cos^{-1}(a)=sin^{-1}(b)$$
    Therefore, $$a^2+b^2=1$$
    Substituting the value of a and b we get
    $$\dfrac{12}{x}^{2}+\dfrac{35}{x}^{2}=1$$
    $$x^2=1369$$
    $$x=37,-37$$
    However , since $$x>0$$
    $$x=37$$
  • Question 6
    1 / -0
    If $$cosec ^{ -1 }\left(cosec (x) \right)$$ and $$cosec\left(cosec ^{ -1 }(x) \right) $$ are equal functions, then the maximum range of value of $$x$$ is
    Solution
    The range of $$cosec^{-1}(cosec(x))$$
    $$=\left[\dfrac{-\pi}{2},0\right)\cup\left(0,\dfrac{\pi}{2}\right]$$
    The range of $$cosec(cosec^{-1}(x))$$
    $$=(-\infty,-1]\cup[1,\infty)$$
    Since it is given that both the functions are equal, then the range of value x common to both will be
    $$=\left[\dfrac{-\pi}{2},-1\right]\cup\left[1,\dfrac{\pi}{2}\right]$$
  • Question 7
    1 / -0
    The range of values of p for which the equation $$\sin \cos ^{-1}(\cos (\tan ^{-1}x))= p$$ has a solution is
    Solution
    Here The range of $$cos(tan^{-1}(x))$$ will be  [-1,1] since the range of $$cos\theta$$ is always $$[-1,1]$$
    Hence for $$cos(tan^{-1}(x))=1$$
    $$sin(cos^{-1}(1))$$
    $$=sin(0)$$
    $$=0$$
    For $$cos(tan^{-1}(x))=0$$
    $$sin(cos^{-1}(0))$$
    $$=sin(\frac{\pi}{2})$$
    $$=1$$
    For $$cos(tan^{-1}(x))=-1$$
    $$sin(cos^{-1}(-1))$$
    $$=sin(\pi)$$
    $$=0$$
    Howere p=1 for $$x\rightarrow \infty$$
    Hence range of p=[0,1).
  • Question 8
    1 / -0
    The solution set of the equation $$\displaystyle \sin^{-1} \sqrt{1-x} + \cos^{-1}x = \cot^{-1} \left ( \frac{\sqrt{1-x^{2}}}{x} \right )-\sin^{-1}x$$
    Solution
    $$\displaystyle \sin^{-1} \sqrt{1-x} + \cos^{-1}x = \cot^{-1} \left ( \frac{\sqrt{1-x^{2}}}{x} \right )-\sin^{-1}x$$

    $$\Rightarrow \sin ^{ -1 } \sqrt { 1-x } +\dfrac { \pi  }{ 2 } =\cot ^{ -1 } \left( \dfrac { \sqrt { 1-x^{ 2 } }  }{ x }  \right) $$

    $$\Rightarrow \dfrac { \pi  }{ 2 } -\cot ^{ -1 } \left( \dfrac { \sqrt { 1-x^{ 2 } }  }{ x }  \right) =-\sin ^{ -1 } \sqrt { 1-x } $$

    $$\Rightarrow \tan ^{ -1 } \left( \dfrac { \sqrt { 1-x^{ 2 } }  }{ x }  \right) =-\sin ^{ -1 } \sqrt { 1-x } $$

    Thus is only true when, $$x = \{1\}$$
  • Question 9
    1 / -0
    If $$\sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\cfrac { 3\pi  }{ 2 } $$ and $$f(1)=2,f(x+y)=f(x)f(y)$$  for all  $$x,y\in R$$. Then $${ x }^{ { f(1) } }+{ y }^{ f(2) }+{ z }^{ f(3) }-\cfrac { x+y+z }{ { x }^{ f(1) }+{ y }^{ f(2) }+{ z }^{ f(3) } } $$ is equal to
    Solution
    We know that $$-\cfrac { \pi  }{ 2 } \le \sin ^{ -1 }{ x } ,\sin ^{ -1 }{ y } ,\sin ^{ -1 }{ z } \le \cfrac { \pi  }{ 2 } $$
    $$\therefore \sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\cfrac { 3\pi  }{ 2 } $$
    $$\Rightarrow \sin ^{ -1 }{ x } =\sin ^{ -1 }{ y } =\sin ^{ -1 }{ z } =\cfrac { \pi  }{ 2 } $$
    $$\Rightarrow x+y+z=1$$
    It is given that $$f(x+y)=f(x)f(y)$$ for all $$x,y\in R$$
    $$\therefore f(x)={ \left[ f(1) \right]  }^{ x }$$ for all $$x\in R$$
    $$\Rightarrow f(x)={ 2 }^{ x }$$ for all $$x\in R$$
    $$\Rightarrow f(1)=2,\quad f(2)=4,\quad f(3)=8$$
    $$\therefore \quad { x }^{ f(1) }+{ y }^{ f(2) }+{ z }^{ f(3) }=\cfrac { x+y+z }{ { x }^{ f(1) }+{ y }^{ f(2) }{ + }{ z }^{ f(3) } } $$
    $$1+1+1-\cfrac { 1+1+1 }{ 1+1+1 } =3-1=2$$
  • Question 10
    1 / -0
    If $$\left[ \sin ^{ -1 }{ \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  }  }  }  \right] =1$$, where $$[.]$$ denotes the greatest integer function, the $$\theta$$ lies in the interval  
    Solution
    We have $$\left[ \sin ^{ -1 }{ \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  }  }  }  \right] =1$$    $$\Rightarrow 1\le \sin ^{ -1 }{ \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta } } } }\le \displaystyle\frac { \pi  }{ 2 }$$
    $$\Rightarrow \sin { 1 } \le \cos ^{ -1 }{ \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  }  } \le 1$$    $$\Rightarrow \cos { \sin { 1 }  } \ge \sin ^{ -1 }{ \tan ^{ -1 }{ \theta  }  } \ge \cos { 1 }$$
    $$\Rightarrow \sin { \cos { \sin { 1 }  }  } \ge \tan ^{ -1 }{ \theta  } \ge \sin { \cos { 1 }  }$$    $$\Rightarrow \tan { \sin { \cos { \sin { 1 }  }  }  } \ge \theta \ge \tan { \sin { \cos { 1 }  }  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now