$$0< \cot^{-1}x< \pi $$ and $$-\pi /2< \tan^{-1}x< \pi $$
$$\Rightarrow
$$ $$\left [ \cot^{-1}x \right ]\in \left \{ 0, 1, 2, 3 \right
\}$$ and $$\left [ \tan^{-1}x \right ]\in \left \{ -2, -1, 0, 1
\right \}$$
For $$\left [ \tan^{-1}x \right ]+\left [ \cot^{-1}x \right ]=2$$, following cases are possible
Case (i): $$\left [ \cot^{-1}x \right ]=\left [ \tan^{-1}x \right ]=1$$
$$\Rightarrow $$ $$1\leq \cot^{-1}x< 2$$ and $$1\leq \tan^{-1}x< \pi /2$$
$$\Rightarrow $$ $$x\in \left ( \cot 2, \cot 1 \right ]$$ and $$x\in \left [ \tan 1, \infty \right )$$
$$\therefore $$ $$x\in \phi $$ as $$\cot 1< \tan 1$$
Case (ii): $$\left [ \cot^{-1}x \right ]=2$$, $$\left [ \tan^{-1}x \right ]=0$$
$$\Rightarrow $$ $$2\leq \cot^{-1}x< 3$$ and $$0\leq \tan^{-1}x< 1$$
$$\Rightarrow $$ $$x\in \left ( \cot 3, \cot 2 \right ]$$ and $$x\in \left [ 0, \tan 1 \right )$$
$$\therefore $$ $$x\in \phi $$ as $$\cot 2< 0$$
So no solution.
Case (iii): $$\left [ \cot^{-1}x \right ]=3$$, $$\left [ \tan^{-1}x \right ]=-1$$
$$\Rightarrow $$ $$3\leq \cot^{-1}x< \pi $$ and $$-1\leq \tan^{-1}x< 0$$
$$\Rightarrow $$ $$x\in \left ( -\infty , \cot 3 \right ]$$ and $$x\in \left [ -\tan 1, 0 \right )$$
$$\therefore $$ $$x\in \phi $$ as $$\cot 3< -\tan 1$$
Therefore, no such values of $$x$$ exist.