Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$\displaystyle f:A\rightarrow B$$ be a function defined by $$\displaystyle y=f(x)$$ where f is a bijective function, means f is injective (one-one) as well as surjective (onto), then there exist a unique mapping $$\displaystyle g:B\rightarrow A$$ such that $$\displaystyle f(x)=y$$ if and only if $$\displaystyle g(y)=x\forall x \epsilon A,y \epsilon B $$ Then function g is said to be inverse of f and vice versa so we write $$\displaystyle g=f^{-1}:B\rightarrow A[\left \{ f(x),x \right \}:\left \{ x,f(x) \right \}\epsilon f^{-1}] $$when branch of an inverse function is not given (define) then we consider its principal value branch.

    If $$\displaystyle -1<x<0$$,then $$\displaystyle \tan^{-1}x $$ equals?

  • Question 2
    1 / -0

    Match the entries of Column - I and Column - II.

    Column - IColumn - II
    aIf 4 $$sin^{-1} x + cos^{-1} x = \pi$$, then x equals1ab
    bIf $$\angle C = 90^{0}$$, then the value of $$tan^{-1}$$ $$\dfrac{a}{b + c}$$ + $$tan^{-1}$$ $$\dfrac{b}{c +a}$$ is 2$$\pi$$
    c$$tan^{-1}$$ 1 + $$tan^{-1}$$ 2 + $$tan^{-1}$$ 3 is3$$\pi$$/4
    dIf $$sec^{-1}$$ $$\dfrac{x}{a}$$ - $$sec^{-1}$$ $$\dfrac{x}{b}$$ = $$sec^{-1}$$ b - $$sec^{-1}$$ a, then x equals41/2

  • Question 3
    1 / -0

    The value of $$sin^{-1} x + cos^{-1} x (|x| \geq 1)$$ is

  • Question 4
    1 / -0

    Express in terms of an inverse function the angle formed at the intesection of the diagonals of a cube.

  • Question 5
    1 / -0

    The number of solutions of the equation $$sin^{-1} \displaystyle \left ( \frac{1 + x^2}{2x} \right ) = \frac{\pi}{2}  (sec(x - 1))$$ is/are

  • Question 6
    1 / -0

    Let $$a, b, c$$ be a positive real numbers $$\theta = \tan^{-1} \sqrt{\dfrac{a(a + b +c)}{bc}} + \tan^{-1} \sqrt{\dfrac{b(a + b+ c)}{ca}} + \tan^{-1} \sqrt{\dfrac{c(a + b + c)}{ab}}$$, then $$\tan \theta$$

  • Question 7
    1 / -0

    Let $$a={ (\sin ^{ -1 }{ x) }  }^{ \sin ^{ -1 }{ x }  },\quad b={ \left( \sin ^{ -1 }{ x }  \right)  }^{ \cos ^{ -1 }{ x }  },\quad c={ \left( \cos ^{ -1 }{ x }  \right)  }^{ \sin ^{ -1 }{ x }  },\quad d={ \left( \cos ^{ -1 }{ x }  \right)  }^{ \cos ^{ -1 }{ x }  }$$ and if $$x\in (0,1)$$then 

  • Question 8
    1 / -0

    $$2{\tan ^{ - 1}}\left[ {\sqrt {\dfrac{{a - b}}{{a + b}}} \tan \dfrac{\theta }{2}} \right] = $$

  • Question 9
    1 / -0

    If $$\cos ^{ -1 }{ \cfrac { x }{ 2 }  } +\cos ^{ -1 }{ \cfrac { y }{ 3 }  } =\theta $$, then $$9{x}^{2}-12xy\cos{\theta}+4{y}^{2}$$ is equal to

  • Question 10
    1 / -0

    $$\sin^{-1} \sin{15}+\cos^{-1} \cos{20}+\tan^{-1}\tan{25}=$$ ?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now