Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    If $$x = {\sin ^{ - 1}}\left( {\sin 10} \right)\,\,and\,\,y = {\cos ^{ - 1}}\left( {\cos 10} \right)$$

  • Question 2
    1 / -0

    If $$\theta \epsilon [4\pi ,5\pi ]$$, then $${ cos }^{ -1 }(cos\theta )$$ equals 

  • Question 3
    1 / -0

    The sum of roots of the equation $$\tan^{-1}\dfrac{1}{1+2x}+\tan^{-1}\dfrac{1}{1+4x}=\tan^{-1}\dfrac{2}{x^{2}}$$ is 

  • Question 4
    1 / -0

    If $${\sin ^{ - 1}}x + {\cos ^{ - 1}}y = \frac{{2\pi }}{5},$$ then $${\cos ^{ - 1}}x + {\sin ^{ - 1}}y$$ is 

  • Question 5
    1 / -0

    $${\cos ^{ - 1}}\left( {\cos \;x} \right) = [x],[.]\;denotes\;the\;greatest\;\operatorname{int} eger\;function,\;is\;$$

  • Question 6
    1 / -0

    The number of solution for the equation $$\cos^{-1}(1-x)+m\ \cos^{-1}x=\dfrac {n\pi}{2}$$ where $$m > 0,n \le 0$$ is

  • Question 7
    1 / -0

    Solve the equation : $$4 \tan ^ { - 1 } \dfrac { 1 } { 5 } - \tan ^ { - 1 } \dfrac { 1 } { 239 } =?$$

  • Question 8
    1 / -0

    If $$[\sin^{-1}(\cos ^{-1}(\sin ^{-1}(\tan ^{-1}x)))]=1$$, where $$\left[ \bullet  \right] $$ denotes the greatest integer function, then $$x\in $$

  • Question 9
    1 / -0

    Let $$f( x ) = \sin ^ { - 1 } x + \cos ^ { - 1 } x \cdot$$ Then $$\frac { \pi } { 2 }$$ is equal to:

  • Question 10
    1 / -0

    If $$tan^{-1}2x + tan^{-1}3x = \dfrac{\pi}{4}$$ then $$x$$ =

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now