Self Studies
Selfstudy
Selfstudy

Matrices Test - 19

Result Self Studies

Matrices Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{bmatrix}$$, then $$A^2$$ is equal to 
    Solution
    Given, $$A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{bmatrix}$$

    $$A^{2}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{bmatrix}$$

    $$=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$\Rightarrow A^{2}=I$$
  • Question 2
    1 / -0
    If $$A = \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$, Then $$A^2$$ = 
    Solution
    Given $$A = \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$

    $$A^{2}= \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix} \begin{bmatrix}3 & 1 \\ -1 & 2\end{bmatrix}$$

    $$=\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$


  • Question 3
    1 / -0
    If $$\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix},$$ then $$A+B+C$$ is a:
    Solution
    Given:
    $$\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix}$$

    Consider, $$\displaystyle A+B+C=\begin{bmatrix}X &Y \\Z  &W \end{bmatrix}+\begin{bmatrix}X &-Y \\-Z  &W \end{bmatrix}+\begin{bmatrix}-2X &0 \\0  &-2W \end{bmatrix}$$

    $$=\begin{bmatrix}X+X+\left ( -2X \right ) &Y+\left ( -Y \right )+0 \\Z+\left ( -Z \right )+0  &W+W+\left ( -2W \right ) \end{bmatrix}$$

    $$=\begin{bmatrix}0 &0 \\0  &0 \end{bmatrix}$$
    Hence, $$A+B+C$$ is a null matrix.
  • Question 4
    1 / -0
    If $$\begin{bmatrix}3 & -1 \\ 2 & 5\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}4 \\ -3\end{bmatrix},$$ find $$x$$ and $$y$$
    Solution
    $$\begin{bmatrix}3 & -1 \\ 2 & 5\end{bmatrix}\begin{bmatrix}x \\ y \end{bmatrix} = \begin{bmatrix}4 \\ -3\end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 3x-y \\ 2x+5y \end{bmatrix}=\begin{bmatrix} 4 \\ -3 \end{bmatrix}$$
    $$\Rightarrow 3x-y=4, 2x+5y=-3$$
    On solving we get $$x=1, y=-1$$
  • Question 5
    1 / -0
    If $$\displaystyle \:A= \left [ \begin{matrix}4 &x+2 \\2x-3  &x+1 \end{matrix} \right ]$$ is symmetric, then x= 
    Solution
    Given $$\displaystyle \:A= \left [ \begin{matrix}4 &x+2 \\2x-3  &x+1 \end{matrix} \right ]$$ is symmteric.

    $$A^{T}=A$$
    $$\Rightarrow \left[ \begin{matrix} 4 & 2x-3 \\ x+2 & x+1 \end{matrix} \right] =\left [ \begin{matrix}4 &x+2 \\2x-3  &x+1 \end{matrix} \right ]$$

    $$\Rightarrow x+2=2x-3$$
    $$\Rightarrow x=5$$
  • Question 6
    1 / -0
    If $$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}, B=\left [ b_{ij} \right ]_{m\times\:n},$$ then the element $$\displaystyle C_{23}$$ of the matrix $$C=A+B$$ is 
    Solution
    $$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n}$$ and $$B=\left [ b_{ij} \right ]_{m\times\:n}$$

    $$\therefore C=A+B$$

    $$\Rightarrow \left [ c_{ij} \right ]_{m\times\:n}=\left [ a_{ij}+b_{ij} \right ]_{m\times\:n}$$

    Hence, $$c_{23}=a_{23}+b_{23}$$
  • Question 7
    1 / -0
    If $$A-A'=0$$, then $$A'$$ is
    Solution
    It is fundamental concept that,
    If $$A = A'$$ then $$A=A'$$ is called symmetric matrix.
  • Question 8
    1 / -0
    For any square matrix $$A,  \  A+{A}^{T}$$ is-
    Solution
    Let,  $$B = A+A^T$$
    $$\Rightarrow B^T = (A+A^T)^T =A^T+(A^T)^T =A^T+A =B$$
    Hence $$B = A+A^T$$ is a symmetric matrix.
  • Question 9
    1 / -0
    If $$\displaystyle  \begin{bmatrix} x & y   \\ 1 & 6   \end{bmatrix} $$ = $$\displaystyle  \begin{bmatrix} 1 & 8   \\ 1 & 6   \end{bmatrix},$$ then $$x+2y=$$
    Solution
    By equating given matrices, we have 
    $$x=1$$ and $$y=8$$
    $$\displaystyle \therefore x+2y=17$$
  • Question 10
    1 / -0
    Given that $$\displaystyle M=\begin{bmatrix}3 &-2 \\-4  &0 \end{bmatrix}\:and\:N=\begin{bmatrix}-2 &2 \\5  &0 \end{bmatrix}$$, then $$M+N$$ is a 
    Solution
    Given: $$\displaystyle M=\begin{bmatrix}3 &-2 \\-4  &0 \end{bmatrix}\:and\:N=\begin{bmatrix}-2 &2 \\5  &0 \end{bmatrix}$$
    Adding $$M$$ and $$N$$, we get
    $$M+N=\begin{bmatrix} 3 & -2 \\ -4 & 0 \end{bmatrix}+\begin{bmatrix} -2 & 2 \\ 5 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now