Self Studies
Selfstudy
Selfstudy

Matrices Test - 20

Result Self Studies

Matrices Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$ and $$B=\begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \end{bmatrix}$$, then $$AB$$ equal to 
    Solution
    $$AB=\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}\begin{bmatrix} 1 & 3 & 2 \\ 2 & 3 & 4 \end{bmatrix}=\begin{bmatrix} 2.1+2.2 & 2.3+3.3 & 2.2+3.4 \\ 1.1+2.2 & 1.3+2.3 & 1.2+2.4 \end{bmatrix}=\begin{bmatrix} 8 & 15 & 16 \\ 5 & 9 & 10 \end{bmatrix}$$

    Ans: A
  • Question 2
    1 / -0
    For square matrix $$A$$, $$A{A}^{T}$$ is-
    Solution
    Since,$${ \left( A{ A }^{ T } \right)  }^{ T }={ \left( { A }^{ T } \right)  }^{ T }{ A }^{ T }=A{ A }^{ T }$$
    Therefore, $$A{ A }^{ T }$$ is symmetric matrix

    Ans: B 
  • Question 3
    1 / -0
    If $$\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$ is symmetric matrix, then
    Solution
    $$A =\begin{bmatrix} x & y \\ u & v \end{bmatrix}$$
    $$A^T =\begin{bmatrix} x & u \\ y & v \end{bmatrix}$$
    So for $$A$$ to be symmetric matrix, $$A=A^T$$
    $$\Rightarrow y = u\Rightarrow y-u=0$$
  • Question 4
    1 / -0
    If $$A= \displaystyle  \begin{bmatrix} 1  \\  3  \end{bmatrix}   $$ and  $$B= \displaystyle  \begin{bmatrix} -1  \\  4  \end{bmatrix} , $$ then $$A-B =$$
    Solution
     


    Since, $$A= \displaystyle  \begin{bmatrix} 1  \\  3  \end{bmatrix}   $$  $$B = \displaystyle  \begin{bmatrix} -1  \\  4  \end{bmatrix}  $$

     Therefore,  $$A-B =\begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
  • Question 5
    1 / -0
    If $$\displaystyle  \begin{bmatrix} 2 & 3   \\ 4 & 4   \end{bmatrix} $$+$$\displaystyle  \begin{bmatrix} x & 3   \\ y & 1   \end{bmatrix} $$=$$\displaystyle  \begin{bmatrix} 10 & 6   \\ 8 & 5   \end{bmatrix},$$ then $$(x,y)=$$
    Solution
    By equating given matrices, we have
    $$2+x=10 \Rightarrow x=8$$
    Also, $$4+y=8 \Rightarrow y=4$$.
  • Question 6
    1 / -0
    If $$\displaystyle 2\begin{bmatrix}3 &4 \\5  &x \end{bmatrix}+\begin{bmatrix}1 &y \\0  &2 \end{bmatrix}=\begin{bmatrix}7 &0 \\10  &5 \end{bmatrix}$$, then the values of $$x\ and\ y$$ are :
    Solution
    $$2\left[ \begin{matrix} 3 & 4 \\ 5 & x \end{matrix} \right] +\left[ \begin{matrix} 1 & y \\ 0 & 2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$

    $$\Rightarrow \left[ \begin{matrix} 6 & 8 \\ 10 & 2x \end{matrix} \right] +\left[ \begin{matrix} 1 & y \\ 0 & 2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$

    $$\Rightarrow \left[ \begin{matrix} 7 & 8+y \\ 10 & 2x+2 \end{matrix} \right] =\left[ \begin{matrix} 7 & 0 \\ 10 & 5 \end{matrix} \right] $$

    $$\Rightarrow 8+y=0\;\&\;2x+2=5$$

    $$\Rightarrow y=-8\;\&\;2x=3$$
    $$\Rightarrow  x=\dfrac { 3 }{ 2 } $$

    $$\therefore x=\dfrac { 3 }{ 2 }\; \&\;y=-8$$
    Hence, the answer is $$x=\dfrac { 3 }{ 2 }\; \&\;y=-8.$$
  • Question 7
    1 / -0
    If $$A= \displaystyle  \begin{bmatrix} 1 & 0   \\ 1 & 0   \end{bmatrix}  $$ and B=$$\displaystyle  \begin{bmatrix} 1 & 0   \\ 0 & 1   \end{bmatrix}, $$ then $$A+B=$$
    Solution
    Given, $$A= \displaystyle  \begin{bmatrix} 1 & 0   \\ 1 & 0   \end{bmatrix}  $$ and B=$$\displaystyle  \begin{bmatrix} 1 & 0   \\ 0 & 1   \end{bmatrix}  $$ 
    Then, $$A+ B = \displaystyle \begin{vmatrix} 2 & 0   \\ 1 & 1   \end{vmatrix}$$
  • Question 8
    1 / -0
    If $$P=\displaystyle  \begin{bmatrix} 4 & 3 &2   \end{bmatrix}  $$ and $$Q = \displaystyle  \begin{bmatrix} -1 & 2 &3   \end{bmatrix}  ,$$ then $$P-Q=$$
    Solution
    Conditions for the subtraction of matrices:
    1. Two matrices should be of the same order (number of rows=number of columns).
    2. Subtract the corresponding element of other matrices.
    Given, $$P=\displaystyle  \begin{bmatrix} 4 & 3 &2   \end{bmatrix}  $$ and
    $$Q= \displaystyle  \begin{bmatrix} -1 & 2 &3   \end{bmatrix}  $$ 
    Therefore,
    $$P-Q=[4\ 3\ 2] - [-1\ 2\ 3]= [5\ 1\ -1]$$
  • Question 9
    1 / -0
    If A is any square matrix, then $$(A\, +\, A^T)$$ is a ............ matrix 
    Solution
    Lets matrix $$A=\begin{bmatrix} a & b & c\\ d & f & g\\ e & h & i\end{bmatrix}$$

    Then, matrix $$A^T$$, after transforming rows with each other will be,
    $$A^T=\begin{bmatrix} a & d & e\\ b & f & h\\ c & g & i\end{bmatrix}$$

    on adding $$A+A^T$$, we get

    $$\begin{bmatrix} 2a & (b+d) & (c+e)\\ (b+d) & 2f & (h+g)\\ (e+c) & (h+g) & 2i\end{bmatrix}$$

    which is clearly symmetry about its diagonal.
  • Question 10
    1 / -0
    Two matrices $$A$$ and $$B$$ are added if 
    Solution
    While adding two matrices we add the numbers which belong to some row and column of each matrix or two matrices can be added if there are equal number of rows and columns in both.
    Hence, both matrices should have same order.
    $$\therefore$$ option B is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now