Self Studies
Selfstudy
Selfstudy

Matrices Test - 31

Result Self Studies

Matrices Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}$$ , then
    Solution
    $$\displaystyle A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \\ 0 & 6 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} 5 & 4 & 6 \\ 4 & 1 & 2 \\ -5 & -1 & 1 \end{bmatrix}$$ 

    Order of $$A$$ is $$3\times2$$
    Order of $$B$$ is $$3\times3$$

    Order of $$A$$ and $$B$$ are not same. So , $$A+B$$ does not exists.

    Again , $$AB$$ also does not exists as the number of columns of $$A$$ are not equal to the number of rows of $$ B.$$

    Here, $$BA$$ exists as the number of columns of $$B$$ is equal to the number of rows of $$A$$.
  • Question 2
    1 / -0
    Use the method of elementary row transformation to compute the inverse of 
    $$\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}$$
    Solution
    Let $$\quad A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}$$

    $$\Rightarrow \quad Write \space A A^{-1}= I$$

    $$\quad \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix} A^{-1}= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$$

    $$\quad \begin{matrix}R_{21}(-2)\\ \mbox{~}\\ R_{31}(1)\end{matrix}\begin{bmatrix}1 & 0 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1\end{bmatrix}$$

    $$\quad \begin{matrix}R_2(-1) \\ \mbox{~} \\ R_3(1/3)\end{matrix}\begin{bmatrix}1 & 2 & 5 \\ 0 & 1 & 9 \\ 0 & 1 & 2\end{bmatrix}A^{-1} = \begin{bmatrix}1& 0 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{1}{3} & 0 & \displaystyle\frac{1}{3}\end{bmatrix}$$

    $$\quad \begin{matrix}R_{12}(-2) \\ \mbox{~} \\ R_{32}(-1)\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & -7\end{bmatrix} A^{-1}= \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ -\displaystyle\frac{5}{3} & 1 & \displaystyle\frac{1}{3}\end{bmatrix}$$

    $$\quad \begin{matrix}R_3(-1/7)\\ \mbox{~}\end{matrix}\begin{bmatrix}1 & 0 & -13 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}-3 & 2 & 0 \\ 2 & -1 & 0 \\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$

    $$\quad \begin{matrix}R_{13}(13) \\ \mbox{~} \\ R_{23}(-9)\end{matrix}\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$

    Hence, $$\quad A^{-1} = \begin{bmatrix}\displaystyle\frac{2}{21} & \displaystyle\frac{1}{7} & -\displaystyle\frac{13}{21} \\ -\displaystyle\frac{1}{7} & \displaystyle\frac{2}{7} & \displaystyle\frac{3}{7}\\ \displaystyle\frac{5}{21} & -\displaystyle\frac{1}{7} & -\displaystyle\frac{1}{21}\end{bmatrix}$$
  • Question 3
    1 / -0
    If $$A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, \space B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$, then $$AB$$ = 
    Solution
    Given, $$A = \begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$ and $$B = \begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$$

    $$AB=\begin{bmatrix}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2 \end{bmatrix}=\begin{bmatrix}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{bmatrix}$$

    Hence, option A is correct.
  • Question 4
    1 / -0
    Given $$A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}$$, which of the following result is true?
    Solution
    Given, $$A = \begin{bmatrix}1 & -1 \\ 2 & -1\end{bmatrix}$$

    Now, $$A^{2}=\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

    $$=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

    $$\Rightarrow A^{2}=-I$$
  • Question 5
    1 / -0
    $$A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}$$ is symmetric, then $$x$$ =
    Solution
    $$A = \begin{bmatrix}4 & x+2 \\ 2x-3 & x+1\end{bmatrix}$$
    $$A^{T}=\begin{bmatrix}4 & 2x-3 \\ x+2 & x+1\end{bmatrix}$$
    $$A$$ is symmetric.
    $$\therefore\quad A=A^{T}$$
    $$\Rightarrow 2x-3=x+2$$
    $$\therefore  x=5$$
    Hence, option B.
  • Question 6
    1 / -0
    Let $$\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}$$. The only correct statement about the matrix $$A$$ is
    Solution
    $$\displaystyle A = \begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}$$
    $$\displaystyle A^2=\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{bmatrix}=\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}$$
    $$\therefore A^2=I$$
    Hence, option D.

  • Question 7
    1 / -0
    If $$\displaystyle A=\begin{bmatrix}0 &c  &-b \\-c  &0  &a \\b  &-a  &0 \end{bmatrix}$$  and $$\displaystyle B=\begin{bmatrix}a^{2} &ab  &ac \\ab  &b^{2}  &bc \\ac  &bc  &c^{2} \end{bmatrix},$$ then $$AB=$$
    Solution
    Given : $$\displaystyle A=\begin{bmatrix}0 &c  &-b \\-c  &0  &a \\b  &-a  &0 \end{bmatrix}$$ $$\displaystyle B=\begin{bmatrix}a^{2} &ab  &ac \\ab  &b^{2}  &bc \\ac  &bc  &c^{2} \end{bmatrix}$$

    Then, $$\displaystyle AB= \begin{bmatrix} 0& c & -b\\ -c & 0 & a\\b &-a  &0 \end{bmatrix}\begin{bmatrix} a^{2} & ab & ac\\  ab & b^{2} & bc \\ ac  & bc & c^{2}\end{bmatrix}$$

    $$=\begin{bmatrix} abc-abc & b^{2}c-b^{2}c & bc^{2}-bc^{2} \\ -a^{2}c+a^{2}c & -abc+abc  & -ac^{2}+ac^{2} \\ a^2b-a^2b & ab^2-ab^2 & abc-abc \end{bmatrix}$$

    $$=O$$
  • Question 8
    1 / -0
    Let $$\displaystyle A=\begin{bmatrix}-1\\2\\3 \end{bmatrix}$$ and $$\displaystyle B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix},$$  then matrix $$(AB) A$$ equals
    Solution
    $$A=\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix},B=\begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$$

    $$AB=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}$$

    $$(AB)A=\begin{bmatrix} 2 & 1 & 4 \\ -4 & -2 & -8 \\ -6 & -3 & -12 \end{bmatrix}\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$$

    $$\Rightarrow (AB)A=\begin{bmatrix} 12 \\ -24 \\ -36 \end{bmatrix}=-12\begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}=-12A$$


  • Question 9
    1 / -0
    $$\displaystyle A=\begin{bmatrix}a &b \\b  &a
    \end{bmatrix}$$ and $$\displaystyle A^{2} =\begin{bmatrix}\alpha & \beta \\\beta & \alpha
    \end{bmatrix}$$ then
    Solution
    $$\displaystyle A^{2}=AA=\begin{pmatrix}a &b \\b  &a \end{pmatrix}\begin{pmatrix}a &b \\b  &a \end{pmatrix}$$ $$\displaystyle =\begin{pmatrix}a^{2}+b^{2} &2ab \\2ab  &a^{2}+b^{2} \end{pmatrix}$$ $$\displaystyle =
    \begin{pmatrix} \alpha &\beta \\\beta  &\alpha \end{pmatrix}$$
  • Question 10
    1 / -0
    If $$A =\begin{bmatrix}\alpha &\beta  \\\gamma  &-\alpha  \end{bmatrix}$$ is such that $$A^2 = I$$, then

    Solution
    $$A =\begin{bmatrix}\alpha &\beta  \\\gamma  &-\alpha  \end{bmatrix}$$
    $$A^2=\begin{bmatrix}\alpha^2+\beta \gamma  &\alpha \beta-\alpha \beta  \\\alpha \gamma - \alpha \gamma&\beta \gamma +\alpha^2  \end{bmatrix}$$
    but, $$A^2=I$$
    $$\Rightarrow \alpha ^2+\beta \gamma = 1$$
    $$\Rightarrow 1 -\alpha ^2-\beta \gamma=0$$
    Hence, option B is correct. 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now