Self Studies
Selfstudy
Selfstudy

Matrices Test - 38

Result Self Studies

Matrices Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{vmatrix} 5 & x-2 \\ 2x+3 & x+1 \end{vmatrix}$$ is symmetric, then $$x = $$_____
    Solution
    A=$$ \begin {vmatrix} 5&x-2\\2x-3&x+1\end{vmatrix}$$
    $$\implies A^T=$$$$ \begin {vmatrix} 5&2x-3\\x-2&x+1\end{vmatrix}$$
    Since $$A$$ is symmetric, $$\implies A=A^T$$
    $$\implies x-2=2x+3$$
    $$\implies x=-5$$
  • Question 2
    1 / -0
    If $$A=\begin{bmatrix}x&y&z\end{bmatrix},$$ $$ B=\begin{bmatrix}a&h&g\\h&b&f\\g&f&c\end{bmatrix}, C=\begin{bmatrix}\alpha & \beta & \gamma \end{bmatrix}^{T}$$ then $$ABC$$ is
    Solution
    $$A=\begin{bmatrix} x & y & z \end{bmatrix}\quad \quad B=\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix},\quad \quad C=\begin{bmatrix} \alpha  \\ \beta  \\ \gamma  \end{bmatrix}\\ \quad \quad \quad 1\times 3\qquad \qquad \quad \quad \quad \ 3\times 3\qquad \qquad \qquad \ 3\times 1$$

    So $$ABC$$ is a $$1 \times1$$ matrix
  • Question 3
    1 / -0
    If $$A=\begin{bmatrix} 3 & 3 & 3\\ 3 & 3 & 3\\ 3 & 3 & 3\end{bmatrix}$$, then $$A^3=$$ ___________.
    Solution
    $$\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}\times\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}=\begin{bmatrix}3 & 3 & 3 \\ 3 & 3 & 3 \\3 & 3 & 3 \\\end{bmatrix}=A$$

    $$\implies A =\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}\times\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}=\begin{bmatrix}3 & 3 & 3 \\ 3 & 3 & 3 \\3 & 3 & 3 \\\end{bmatrix}=3\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$A^2=\begin{bmatrix}3 & 3 & 3 \\ 3 & 3 & 3 \\3 & 3 & 3 \\\end{bmatrix}\times \begin{bmatrix}3 & 3 & 3 \\ 3 & 3 & 3 \\3 & 3 & 3 \\\end{bmatrix}$$

    $$=3\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}\times3\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$=9\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}\times\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$=27\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$A^3=A^2.A$$
    $$=27\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix} \times 3\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$=81\begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix} \times \begin{bmatrix}1 & 1 & 1 \\ 1 & 1 & 1 \\1 & 1 & 1 \\\end{bmatrix}$$

    $$=81A$$

    The answer is option (B).

  • Question 4
    1 / -0
    If $$A =\begin{pmatrix} -2& 2\\ 2 & -2\end{pmatrix}$$, then which one of the following is correct?
    Solution
    Given $$A=\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

    $$A^2=\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

    $$=\begin{bmatrix} (-2)(-2)+2\cdot 2 & (-2)(2)+(2)(-2) \\ (2)(-2)+(-2)(2)& (2)(2)+(-2)(-2)\end{bmatrix}$$

    $$=\begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}=-4\begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}=-4A$$
  • Question 5
    1 / -0
    If A = $$ \begin{bmatrix} \alpha & 0 \\ 1 & 1\end{bmatrix}$$ , B = $$ \begin{bmatrix} 1 & 0 \\ 5 & 1\end{bmatrix}$$ whenever $$A^2 \, = \, B$$
    then values of $$\alpha$$ is 
    Solution
    $$A^2$$ = B$$\Rightarrow  \begin{bmatrix} \alpha & 0 \\ 1 & 1\end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1\end{bmatrix} \, = \,   \begin{bmatrix} 1 & 0 \\ 5 & 1\end{bmatrix}$$
    $$\Rightarrow  \begin{bmatrix} \alpha^2 & 0 \\ \alpha+1 & 1\end{bmatrix} \, = \, \begin{bmatrix} 1 & 0 \\ 5 & 1\end{bmatrix}$$
    $$\Rightarrow \alpha^2$$ = 1, $$\alpha$$ + 1 = 5
    $$\therefore \alpha \, = \, \pm 1\, , \, \alpha \, = \, 4$$
    There is no real value of $$\alpha$$ which satisfies both.
  • Question 6
    1 / -0
    Let A = $$\begin{bmatrix}
                  0 & 0 & -1 \\[0.3em]
                  0 & -1 & 0 \\[0.3em]
                  -1 & 0 & 0
                  \end{bmatrix}.$$ Then the only correct statement $$A$$ is
    Solution
    $$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \, \, \therefore A^2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \, \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$
    $$A^2 = \begin{bmatrix} 0 + 0 + 1 & 0 & 0 \\ 0 & 0 + 1 + 0 & 0 \\ 0 & 0 & 0 + 0 + 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
    $$\therefore A^2 = I $$ 
    Hence it is a identity matrix
  • Question 7
    1 / -0
    Using elementary row transformation find the inverse of the matrix A = $$\left[\begin {array}{ll} 3 & -1  &  -2\\ 2  &  0  & -1\\ 3 & -5  &  0 \end {array}\right]$$
    Solution

  • Question 8
    1 / -0
    Given $$A= \begin{bmatrix}  3&6  \\ -2&-8 \end{bmatrix}$$ and $$B = \begin{bmatrix} 2 & 16\end{bmatrix}$$, find the matrix $$X$$ such that $$XA=B$$.
    Solution
    $$XA=B$$
    $${ X }_{ 1\times 2 }{ \begin{bmatrix} 3 & 6 \\ -2 & -8 \end{bmatrix} }_{ 2\times 2 }={ \begin{bmatrix} 2 & 16 \end{bmatrix} }_{ 1\times 2 }$$
    $$X$$ should be of order $$1 \times 2$$
    Let $$X$$ be $$\begin{bmatrix} a & b \end{bmatrix}$$
    $$\therefore \begin{bmatrix} a & b \end{bmatrix}\begin{bmatrix} 3 & 6 \\ -2 & -8 \end{bmatrix}=\begin{bmatrix} 2 & 16 \end{bmatrix}\\ \Rightarrow \begin{bmatrix} 3a-2b & 6a-8b \end{bmatrix}=\begin{bmatrix} 2 & 16 \end{bmatrix}\\ \therefore 3a-2b=2\longrightarrow (1)\times 2\\ \quad 6a-8b=16\longrightarrow (2)\times 1\\ \therefore 6a-4b=4\\ \quad 6a-8b=16\\ \quad \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \\ \quad \quad \ 4b=-12\\ \quad \ \Rightarrow b=-3\\ \therefore 3a+6=2\\ \quad a=\dfrac{-4}{3}\\ \therefore X=\begin{bmatrix} \dfrac{-4}{3} & -3 \end{bmatrix}$$
  • Question 9
    1 / -0
    Obtain the inverse of the following matrix using elementary operation:
    $$A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$
    Solution
    GIven $$A=\begin{bmatrix}3& 0 &-1 \\ 2& 3&0\\0 &4&1\end{bmatrix}$$

    Therefore, $$A^{-1}=\dfrac{1}{|A|}adj(A)$$

    $$\implies A^{-1}=\dfrac{1}{3(3-0)-1(8-0)}\begin{bmatrix}3& -2 &8 \\ -4& 3&-12\\3 &-2&9\end{bmatrix}$$

    $$\implies A^{-1}=\begin{bmatrix}3& -2 &8 \\ -4& 3&-12\\3 &-2&9\end{bmatrix}$$
  • Question 10
    1 / -0
    If $$I =\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \quad \quad 0 & \quad 1 \end{pmatrix},$$ $$P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & \quad \quad 0 & \quad -2 \end{pmatrix},$$ then the matrix $$P^3+2P^2$$ is equal to 
    Solution
    Given the matrix $$P=\begin{pmatrix}1&0&0\\0&-1&0\\ 0&0&-2\end {pmatrix}$$.
    Now,
    $$P^2=\begin{pmatrix}1^2&0&0\\0&(-1)^2&0\\ 0&0&(-2)^2\end {pmatrix}$$ [ Since $$P$$ is a diagonal matrix]
    $$\Rightarrow P^2=\begin{pmatrix}1&0&0\\0&1&0\\ 0&0&4\end {pmatrix}$$......(1).
    Again,
    $$P^3=\begin{pmatrix}1^3&0&0\\0&(-1)^3&0\\ 0&0&(-2)^3\end {pmatrix}$$
    $$\Rightarrow P^3=\begin{pmatrix}1&0&0\\0&-1&0\\ 0&0&-8\end {pmatrix}$$.....(2).
    So,
     $$P^3+2P^2$$ $$=\begin{pmatrix}1+2&0&0\\0&-1+2&0\\ 0&0&-8+8\end {pmatrix}$$ $$=\begin{pmatrix}3&0&0\\0&1&0\\ 0&0&0\end {pmatrix}$$ $$=2I+P$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now