Self Studies
Selfstudy
Selfstudy

Matrices Test - 42

Result Self Studies

Matrices Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix}$$ such that $$A^{2}-6A+7I=0$$, then $$k=$$
    Solution
    $$A = \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix}$$
    $${A}^{2} = \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} \times \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix}$$
    $$\Rightarrow {A}^{2} = \begin{bmatrix} 16+ 1 & -4 - k \\ -4 - k & 1 + {k}^{2} \end{bmatrix} = \begin{bmatrix} 17 & - \left( 4 + k \right) \\ - \left( 4 + k \right) & 1 + {k}^{2} \end{bmatrix}$$
    $$6A = 6 \times \begin{bmatrix} 4 & -1 \\ -1 & k \end{bmatrix} = \begin{bmatrix} 24 & -6 \\ -6 & 6k \end{bmatrix}$$
    $$7I = 7 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
    Therefore,
    $${A}^{2} - 6A + 7I = 0$$
    $$\Rightarrow {A}^{2} = 6A - 7I$$
    $$\begin{bmatrix} 17 & - \left( 4 + k \right) \\ - \left( 4 + k \right) & 1 + {k}^{2} \end{bmatrix} = \begin{bmatrix} 24 & -6 \\ -6 & 6k \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$
    $$\begin{bmatrix} 17 & - \left( 4 + k \right) \\ - \left( 4 + k \right) & 1 + {k}^{2} \end{bmatrix} = \begin{bmatrix} 17 & -6 \\ -6 & 6k - 7 \end{bmatrix}$$
    Comparing both sides, we get
    $$- \left( 4 + k \right) = -6$$
    $$\Rightarrow k = 6 - 4 = 2$$
  • Question 2
    1 / -0
    If $$A\begin{bmatrix} 1 & 1\\ 2 & 0\end{bmatrix}=\begin{bmatrix} 3 & 2\\ 1 & 1\end{bmatrix}$$, then $$A^{-1}$$ is given by?
    Solution

  • Question 3
    1 / -0
    A is an involuntary matrix given by $$A=\begin{bmatrix} 0 & 1 & -1\\ 4 & -3 & 4\\ 3 & -3 & 4\end{bmatrix}$$ then the inverse of $$\dfrac{A}{2}$$ will be?
    Solution

  • Question 4
    1 / -0
    A is an involutory matrix given by $$A=\begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$$ then the inverse of $$\dfrac{A}{2}$$ will be 
    Solution
    Given $$A$$ to be involutory matrix, then according to the definition of involutory matrix we have, $$A^2 =I$$. [ $$I$$ being identity matrix of order $$3$$].
    So, 
    $$A^2=I$$
    or, $$A=A^{-1}$$ [ Since involutory matrix is always invertible]
    or, $$\dfrac{A}{2}=\dfrac{A^{-1}}{2}$$. 
  • Question 5
    1 / -0
    Let A=$$\left[ \begin{matrix} 1 \\ 2 \end{matrix}\begin{matrix} 2 \\ 1 \end{matrix} \right] and\quad B=\left[ \begin{matrix} 4 \\ 5 \\ 0 \end{matrix}\begin{matrix} -3 \\ 6 \\ 1 \end{matrix} \right] $$ then
    Solution
    Given,

    Order of $$A=2\times 2$$ matrix

    Order of $$B=3\times 2$$ matrix

    $$AB$$ does not exist, as the number of columns of matrix $$A$$ is not equal to number of rows of $$B$$
    But, $$BA$$ exists, as the number of columns of matrix $$B$$ is equal to number of rows of $$A$$

  • Question 6
    1 / -0
    If $$\left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \left[ \begin{matrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{matrix} \right] \left[ \begin{matrix} 1 \\ 1 \\ x \end{matrix} \right] =0,$$ then $$x=$$
    Solution
    Given,

    $$\begin{pmatrix}1&x&1\end{pmatrix}\begin{pmatrix}1&3&2\\ 0&5&1\\ 0&3&2\end{pmatrix}\begin{pmatrix}1\\ 1\\ x\end{pmatrix}=0$$

    Upon multiplying the first 2 matrices, we get,

    $$\begin{pmatrix}1\cdot \:1+x\cdot \:0+1\cdot \:0&1\cdot \:3+x\cdot \:5+1\cdot \:3&1\cdot \:2+x\cdot \:1+1\cdot \:2\end{pmatrix}\begin{pmatrix}1\\ 1\\ x\end{pmatrix}=0$$

    Upon further simplification, we get,

    $$\begin{pmatrix}1&6+5x&4+x\end{pmatrix}\begin{pmatrix}1\\ 1\\ x\end{pmatrix}=0$$

    Again multiplying the above matrices, we get,

    $$\begin{pmatrix}1\cdot \:1+\left(6+5x\right)\cdot \:1+\left(4+x\right)x\end{pmatrix}=0$$

    Upon further simplification, we get,

    $$\begin{pmatrix}x^2+9x+7\end{pmatrix}=0$$

    Solving the above quadratic equation, we get,

    $$x=\dfrac{-9\pm \sqrt{53}}{2}$$
  • Question 7
    1 / -0
    if A=$$\left[ \begin{matrix} 2 & 3 \\ 5 & -7 \end{matrix} \right] then\quad \left( { A }^{ '} \right) ^{ 2 }=$$
    Solution
    Given,

    $$A=\begin{pmatrix}2&3\\ \:5&-7\end{pmatrix}$$

    $$\Rightarrow A'=\begin{pmatrix}2&5\\ 3&-7\end{pmatrix}$$

    Now,$$(A')^2$$

    $$=\begin{pmatrix}2&5\\ 3&-7\end{pmatrix}^2$$

    $$=\begin{pmatrix}2&5\\ 3&-7\end{pmatrix}\begin{pmatrix}2&5\\ 3&-7\end{pmatrix}$$

    $$=\begin{pmatrix}2\cdot \:2+5\cdot \:3&2\cdot \:5+5\left(-7\right)\\ 3\cdot \:2+\left(-7\right)\cdot \:3&3\cdot \:5+\left(-7\right)\left(-7\right)\end{pmatrix}$$

    $$=\begin{pmatrix}19&-25\\ -15&64\end{pmatrix}$$
  • Question 8
    1 / -0
    If $$A$$ and $$B$$ are two matrices such that $$AB$$ and $$A+B$$ are both defined then $$A$$ and $$B$$ are 
    Solution
    For the addition of two matrices,it is required that 
    the matrices should be of the same order.
    For multiplication of two matrices A of order $$m\times$$ n and 
    B of order $$p\times q,$$ it requires that 
    $$ n=p----(1) $$
    $$ m = p----(2) $$
    $$ n = q----(3) $$
    form (1) and (3)
    $$ p = q-------(4) $$
    from (1)and (2)
    $$ n = m-----(5) $$
    From (4)and (5),we can conclude that 
    A and B are square matrices and their orders
    are one and same .
    $$\therefore $$ The addition and multiplication of two matrices
    should be of same order and they should be 
    square matrices.
    $$\therefore $$ so, the answer is A. square matrices of the same 
    order.
  • Question 9
    1 / -0
    If $$A=\left[ \begin{matrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{matrix} \right] $$, then value of $$A^{-1}$$ is equal to 
    Solution

  • Question 10
    1 / -0
    If $$U = [ 2, -3 , 4 ]$$ , $$V = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$ , $$X = [0 , 2 , 3]$$ and $$Y = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$ , then $$UV + XY$$ =
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now