Self Studies
Selfstudy
Selfstudy

Matrices Test - 44

Result Self Studies

Matrices Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \begin{bmatrix} 1/25 & 0 \\ x & 1/25 \end{bmatrix}\quad =\quad \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix}^{ -2 } $$, then the value of x is 
    Solution
    Let $$ A = \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix} $$
    $$ \Rightarrow (A)= \begin{bmatrix} 5 & 0 \\ -a & 5 \end{bmatrix} $$
    $$ \Rightarrow A^{-1}  = \frac {1}{ |A| } \begin{bmatrix} 5 & 0 \\ a & 5 \end{bmatrix} = \frac {1}{25} \begin{bmatrix} 5 & 0 \\ a & 5 \end{bmatrix} $$
    $$ \Rightarrow A^{-2} =(A^{-1})^2 = \frac {1}{25} \begin{bmatrix} 5 & 0 \\ a & 5 \end{bmatrix} \frac {1}{25} \begin{bmatrix} 5 & 0 \\ a & 5 \end{bmatrix} $$
    $$ =\frac {1}{625} \begin{bmatrix}25 & 0 \\10a&25 \end{bmatrix} $$
    Now ,
    $$ \begin{bmatrix} 1/2 & 0 \\ x & 1/25 \end{bmatrix}=\begin{bmatrix} \frac {1}{25} &0  \\ \frac {2a}{125} & \frac {1}{25}  \end{bmatrix} $$
    $$ \Rightarrow x = 2a /125 $$
  • Question 2
    1 / -0
    The matrix $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$ is a 
    Solution
    Let $$A=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$ 
    $$A' =\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} =A$$ 
    So, the given matrix is a symmetric matrix.
    [Since, in a square $$A$$. If $$A'=A$$, then $$A$$ is called symmetric matrix]
  • Question 3
    1 / -0
    If $$A=\dfrac { 1 }{ \pi  } \begin{bmatrix} \sin ^{ -1 }{ \left( x\pi  \right)  }  & \tan ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  \\ \sin ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  & \cot ^{ -1 }{ \left( \pi x \right)  }  \end{bmatrix} B=\begin{bmatrix} -\cos ^{ -1 }{ \left( x\pi  \right)  }  & \tan ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  \\ \sin ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  & -\tan ^{ -1 }{ \left( \pi x \right)  }  \end{bmatrix}$$ then $$A-B$$ equal to
    Solution
    We have, $$A= \begin{bmatrix} \dfrac { 1 }{ \pi  } \sin ^{ -1 }{ \left( x\pi  \right)  }  & \dfrac { 1 }{ \pi  } \tan ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  \\ \dfrac { 1 }{ \pi  }\sin ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  & \dfrac { 1 }{ \pi  } \cot ^{ -1 }{ \left( \pi x \right)  }  \end{bmatrix} B=\begin{bmatrix} -\dfrac { 1 }{ \pi  }\cos ^{ -1 }{ \left( x\pi  \right)  }  & \dfrac { 1 }{ \pi  }\tan ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  \\ \dfrac { 1 }{ \pi  }\sin ^{ -1 }{ \left( \dfrac { x }{ \pi  }  \right)  }  & -\dfrac { 1 }{ \pi  }\tan ^{ -1 }{ \left( \pi x \right)  }  \end{bmatrix}$$ 

    $$\therefore A-B=\begin{bmatrix} \dfrac { 1 }{ \pi  } \left( \sin ^{ -1 }{ x\pi  } +\cos ^{ -1 }{ x\pi  }  \right)  & \dfrac { 1 }{ \pi  } \left( \tan ^{ -1 }{ \dfrac { x }{ \pi  }  } -\tan ^{ -1 }{ \dfrac { x }{ \pi  }  }  \right)  \\ \dfrac { 1 }{ \pi  } \left( \sin ^{ -1 }{ \dfrac { x }{ \pi  }  } -\sin ^{ -1 }{ \dfrac { x }{ \pi  }  }  \right)  & \dfrac { 1 }{ \pi  } \left( \cot ^{ -1 }{ \pi x }  \right) +\tan ^{ -1 }{ \pi x }  \end{bmatrix}$$

    $$\begin{bmatrix} \dfrac { 1 }{ \pi  } .\dfrac { \pi  }{ 2 }  & 0 \\ 0 & \dfrac { 1 }{ \pi  } .\dfrac { \pi  }{ 2 }  \end{bmatrix}\begin{bmatrix} \because \sin ^{ -1 }{ x } +\cos ^{ -1 }{ x } =\dfrac { \pi  }{ 2 }  \\ and\tan ^{ -1 }{ x+ } \cot ^{ -1 }{ x } =\dfrac { \pi  }{ 2 }  \end{bmatrix}$$

    $$=\dfrac { 1 }{ 2 } \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\dfrac { 1 }{ 2 } I$$
  • Question 4
    1 / -0
    If matrix $$A=[a_{ij}]_{2\times 2}$$, where $$a_{ij} *1$$ if $$1*j$$ and $$0$$ if $$i=j$$ then $$A^2$$ is equal to
    Solution
    We have, $$A=[a_{ij}]_{2\times 2}$$. where $$a_{ij}=1$$ if $$1\neq j$$ and if $$i=j$$
    $$\therefore A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
    And $$A^2=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=I$$
  • Question 5
    1 / -0
    If $$A$$ and $$B$$ are square matrices of the same order, then $$(A+B)(A-B)$$ is equal to 
    Solution
    $$(A+B)(A-B)=A(A-B)+B(A-B)$$.........because matrix product is distributive.
    $$=A^2-AB+BA-B^2$$
    And as matrix product is not commutative, so $$AB\neq BA$$
    Hence option $$C$$ is correct.
  • Question 6
    1 / -0
    If $$A=\begin{bmatrix} 2 & 1 & 3 \\ 4 & 5 & 1 \end{bmatrix}$$ and $$B=\begin{bmatrix} 2 & 3 \\ 4 & 2 \\ 1 & 5 \end{bmatrix}$$, then 
    Solution
    Let $$A=[a_{ij}]_{2\times 3}, B=[b_{ij}]_{3\times 2}$$. 
    For, $$AB$$ columns of $$A=3$$ is equal to rows of $$B=3$$. So, $$AB$$ is defined.
    For, $$BA$$ columns of $$B=2$$ is equal to rows of $$A=2$$. So, $$BA$$ is defined.
    So, Both $$AB$$ and $$BA$$ are defined.
    $$(C)$$ is the correct answer.
  • Question 7
    1 / -0
    If $$3\begin{bmatrix}2 & 3\\ -4 & 1\end{bmatrix} - 2 \begin{bmatrix} x& y\\ 3 & 4\end{bmatrix} = \begin{bmatrix}10 & 11\\ z & -5\end{bmatrix}$$, then $$x + y - z =$$
  • Question 8
    1 / -0
    If the matrix $$A = \begin{bmatrix}2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 2\end{bmatrix}$$, then $$A^n=\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ b & 0 & a\end{bmatrix}. n \in N$$ where
    Solution
    Given $$A=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}\quad =2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
    $$\Rightarrow {A}^{2} =2^2\begin{bmatrix}1&0&0\\0&1&0\\1&0&1 \end{bmatrix}\begin{bmatrix}1&0&0\\0&1&0\\1&0&1\end{bmatrix}= 2^{2}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
    $$\Rightarrow {A}^{3} = 2^{3}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$ and so on
    we can observe that $${A}^{n} = 2^{n}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ n& 0 & 1 \end{bmatrix}$$
    By comparing we get $$ a= 2^{n} , b= n2^{n} $$ 
  • Question 9
    1 / -0
    $$A $$ is of order $$m \times n$$ and $$B$$ is of order $$p \times q,$$ addition of $$A$$ and $$B$$ is possible only if
    Solution
    Since, the order of $$A$$ is $$m\times n $$ and order of $$ B$$ is $$p\times q$$
    Then $$A+B$$ is only possible if $$m=p$$ $$\&$$ $$n=q.$$
    Hence, the answer is $$m=p$$ $$\&$$ $$n=q.$$
  • Question 10
    1 / -0
    What is the inverse of the matrix
    $$A=\begin{bmatrix} \cos { \theta  }  & \sin { \theta  }  & 0 \\ -\sin { \theta  }  & \cos { \theta  }  & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ ?
    Solution
    $$A = \begin{bmatrix} \cos \theta &  \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
    Calculate first minors.
    $$M_{11} = \cos \theta , M_{13} = 0, M_{22} = \cos \theta$$
    $$M_{12} = -\sin \theta, M_{21} = \sin \theta, M_{23} = 0$$
    $$M_{31} = 0, M_{32} = 0, M_{33} = \cos^{2}\theta + \sin^{2}\theta = 1$$
    Cofactor Matrix $$= \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix} = C$$
    $$det|A| = \cos^{2}\theta + \sin^{2}\theta = 1$$

    $$adj (A) = C^{T} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1\end{bmatrix}$$

    $$A^{-1} = \dfrac {adj(A)}{(A)} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0& 0 & 1\end{bmatrix}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now