Self Studies
Selfstudy
Selfstudy

Matrices Test - 45

Result Self Studies

Matrices Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$O\left( A \right) =2\times 3,$$ $$O\left( B \right) =3\times 2$$ and $$O\left( C \right) =3\times 3$$, which one of the following is not defined?
    Solution
    Given that, $$O\left( A \right) =2\times 3,$$ $$O\left( B \right) =3\times 2$$ and $$O\left( C \right) =3\times 3$$
    $$\Rightarrow O\left( { A }^{ ' } \right) =3\times 2, O\left( { B }^{ ' } \right) =2\times 3$$
    (a) $$CB+{ A }^{ ' }$$
    Now, Order of $$CB=$$ (Order of $$C$$) (Order of $$B$$)
    $$=$$ (Order of $$C$$ is $$3\times 3$$) (Order of $$B$$ is $$3\times 2$$)
    $$=$$ Order of $$CB$$ is $$3\times 2$$
    Since, $$O\left( { A }^{ ' } \right) =3\times 2$$
    Therefore, matrix $$CB+{ A }^{ ' }$$ can be determined.
    (b) $$O\left( BA \right) =3\times 3$$ and $$O\left( C \right) =3\times 3$$
    Therefore, matrix $$BAC$$ can be determined.
    (c) $$C{ \left( A+{ B }^{ ' } \right)  }^{ ' }$$
    $$O\left( A+{ B }^{ ' } \right) =2\times 3$$
    $$\Rightarrow O{ \left( A+{ B }^{ ' } \right)  }^{ ' }=3\times 2$$
    and $$O\left( C \right) =3\times 3$$
    Therefore, matrix $$C{ \left( A+{ B }^{ ' } \right)  }^{ ' }$$ can be determined.
    (d) $$C\left( A+{ B }^{ ' } \right) $$
    $$O\left( A+{ B }^{ ' } \right) =2\times 3$$
    and $$O\left( C \right) =3\times 3$$
    $$\therefore $$ Matrix $$C\left( A+{ B }^{ ' } \right) $$ cannot be determined
    Hence, option D is correct.
  • Question 2
    1 / -0
    If $$A=
    \begin{bmatrix}
    2 & -1 \\
    -1 & 2
    \end{bmatrix}$$ and $$I$$ is the unit matrix of order $$2$$, then $$A^2$$equals
    Solution
    $$A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\\ { A }^{ 2 }=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\\ \quad =\begin{bmatrix} 4+1 & -2-2 \\ -2-2 & 1+4 \end{bmatrix}\\ \quad =\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$
    Answer will be A option because
    $$4A-3I=\begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix}-\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}\\ \quad \quad \quad \ =\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$
  • Question 3
    1 / -0
    Let $$A=\begin{bmatrix} 3 & 1\\ -1 & 2\end{bmatrix}$$, then
    Solution
    $${ A }^{ 2 }=\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}=\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$
    $${ A }= \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
    $${ I }= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
    We find (d) satisfy the condition as 
    $${ A }^{ 2 }-5A-7I=0$$
    $$\quad \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}-\begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix}+\begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}=0$$
    Thus,$${ A }^{ 2 }-5A-7I=0$$ is correct  
  • Question 4
    1 / -0
    Let $$A=\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$ and $$10B=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}$$. If $$B$$ is the inverse of matrix $$A$$, then $$\alpha $$ is
    Solution
    Since, $$B$$ is the inverse of matrix $$A$$.
    So, $$10{ A }^{ -1 }=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}$$
    $$\Rightarrow 10{ A }^{ -1 }\cdot A=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
    $$\Rightarrow 10I = \begin{bmatrix} 4+4+2 & -4+2+2 & 4-6+2 \\ -5+0+\alpha  & 5+0+\alpha  & -5+0+\alpha  \\ 1-4+3 & -1-2+3 & 1+6+3 \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}=\begin{bmatrix} 10 & 0 & 0 \\ -5+\alpha  & 5+\alpha  & -5+\alpha  \\ 0 & 0 & 10 \end{bmatrix}$$
    $$\Rightarrow -5+\alpha =0$$
    $$\Rightarrow \alpha =5$$ 
  • Question 5
    1 / -0
    $$If\quad A=\begin{bmatrix} ab & { b }^{ 2 } \\ -{ a }^{ 2 } & -ab \end{bmatrix},then\quad { A }^{ 2 }\quad is\quad equal\quad to$$
    Solution

  • Question 6
    1 / -0
    If $$\left[ \begin{matrix} x & 4 & -1 \end{matrix} \right] \left[ \begin{matrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 4 \end{matrix} \right] \left[ \begin{matrix} x \\ 4 \\ -1 \end{matrix} \right] =0,$$ then $$x=$$
  • Question 7
    1 / -0
    The value of $$x$$, so that $$\left[ 1 \quad x \quad 1 \right] \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix}=0$$ is/are
    Solution

  • Question 8
    1 / -0
    If the matrix $$\begin{bmatrix} 0 & 2\beta & \Upsilon \\ \alpha & \beta & -\Upsilon \\ \alpha & -\beta & \Upsilon \end{bmatrix}$$is orthogonal, then
    Solution
    $$\begin{bmatrix} 0 & 2\beta  & \gamma  \\ \alpha  & \beta  & -\gamma  \\ \alpha  & -\beta  & \gamma  \end{bmatrix}$$
    for orthogonal matrix we have 
    $$A.A^{T}=I$$
    $$\begin{bmatrix} 0 & 2\beta  & \gamma  \\ \alpha  & \beta  & -\gamma  \\ \alpha  & -\beta  & \gamma  \end{bmatrix}\begin{bmatrix} 0 & \alpha  & \alpha  \\ 2\beta  & \beta  & -\beta  \\ \gamma  & -\gamma  & \gamma  \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
    $$\begin{bmatrix} 0+4{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & 0+2{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & 0-2{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } \\ 0+2{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }-{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } \\ 0-2{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }-{ \beta  }^{ 2 }-{ \gamma  }^{ 2 } & { \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
    $$4\beta^{2}+\gamma^{2}=1, 2\beta^{2}-\gamma^{2}=0$$, 
    $$4\left(\dfrac{\gamma^{2}}{2}\right)+\gamma^{2}=1$$        $$\beta^{2}=\dfrac{r^{2}}{2}$$
    $$r^{2}[3]=1$$
    $$r=\pm \dfrac{1}{\sqrt{3}}$$
    $$2\beta^{2}-\gamma^{2}=0, \alpha^{2}+\beta^{2}+\gamma^{2}+\gamma^{2}=1, \alpha^{2}-\beta^{2}-\gamma^{2}=0$$
    $$\beta^{2}=\dfrac{\gamma^{2}}{2},  \alpha^{2}+\dfrac{\gamma^{2}}{2}+\dfrac{\gamma^{2}}{1}=1$$
    $$\alpha^{2}+\dfrac{3\gamma^{2}}{2}=1$$
    $$\beta^{2}=\dfrac{1}{6}\alpha^{2}+\dfrac{3}{2}\times \dfrac{1}{3}=1$$
    $$\beta=\pm \dfrac{1}{\sqrt{6}}$$            $$\alpha=\pm \dfrac{1}{\sqrt{2}}$$
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$, then : $$A^{-1}$$=
    Solution

  • Question 10
    1 / -0
    If $$A=\left[ \begin{matrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{matrix} \right] $$, then $$A^{2}-4\ A$$ is equal to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now