$$\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$$
for orthogonal matrix we have
$$A.A^{T}=I$$
$$\begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}\begin{bmatrix} 0 & \alpha & \alpha \\ 2\beta & \beta & -\beta \\ \gamma & -\gamma & \gamma \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0+4{ \beta }^{ 2 }+{ \gamma }^{ 2 } & 0+2{ \beta }^{ 2 }-{ \gamma }^{ 2 } & 0-2{ \beta }^{ 2 }+{ \gamma }^{ 2 } \\ 0+2{ \beta }^{ 2 }-{ \gamma }^{ 2 } & { \alpha }^{ 2 }+{ \beta }^{ 2 }+{ \gamma }^{ 2 } & { \alpha }^{ 2 }-{ \beta }^{ 2 }-{ \gamma }^{ 2 } \\ 0-2{ \beta }^{ 2 }+{ \gamma }^{ 2 } & { \alpha }^{ 2 }-{ \beta }^{ 2 }-{ \gamma }^{ 2 } & { \alpha }^{ 2 }+{ \beta }^{ 2 }+{ \gamma }^{ 2 } \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$4\beta^{2}+\gamma^{2}=1, 2\beta^{2}-\gamma^{2}=0$$,
$$4\left(\dfrac{\gamma^{2}}{2}\right)+\gamma^{2}=1$$ $$\beta^{2}=\dfrac{r^{2}}{2}$$
$$r^{2}[3]=1$$
$$r=\pm \dfrac{1}{\sqrt{3}}$$
$$2\beta^{2}-\gamma^{2}=0, \alpha^{2}+\beta^{2}+\gamma^{2}+\gamma^{2}=1, \alpha^{2}-\beta^{2}-\gamma^{2}=0$$
$$\beta^{2}=\dfrac{\gamma^{2}}{2}, \alpha^{2}+\dfrac{\gamma^{2}}{2}+\dfrac{\gamma^{2}}{1}=1$$
$$\alpha^{2}+\dfrac{3\gamma^{2}}{2}=1$$
$$\beta^{2}=\dfrac{1}{6}\alpha^{2}+\dfrac{3}{2}\times \dfrac{1}{3}=1$$
$$\beta=\pm \dfrac{1}{\sqrt{6}}$$ $$\alpha=\pm \dfrac{1}{\sqrt{2}}$$