Self Studies
Selfstudy
Selfstudy

Matrices Test - 46

Result Self Studies

Matrices Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Inverse of $$\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$ is
    Solution

  • Question 2
    1 / -0
    If $$A$$ and $$B$$ are square matrices such that $$B=-A^{-1}BA$$, then 
    Solution

  • Question 3
    1 / -0
    If $$A=\left[ \begin{matrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{matrix} \right] $$ and $$10B=\left[ \begin{matrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{matrix} \right] $$ where $$B=A^{-1}$$ then $$\alpha$$ is equal to-
    Solution

  • Question 4
    1 / -0
    A is a $$2\times 2$$ matrix such that $$A\begin{bmatrix} 1 &  \\  & -1 \end{bmatrix}=\begin{bmatrix} 1 &  \\ 0 &  \end{bmatrix}$$ and $${ A }^{ 2 }\begin{bmatrix} 1 &  \\  & -1 \end{bmatrix}=\begin{bmatrix} 1 &  \\ 0 &  \end{bmatrix}$$. The sum of the elements f A, is
  • Question 5
    1 / -0
    The inverse of the matrix  $$\left[ \begin{array} { c c c } { 1 } & { 0 } & { 0 } \\ { 3 } & { 3 } & { 0 } \\ { 5 } & { 2 } & { - 1 } \end{array} \right]$$  is
    Solution

  • Question 6
    1 / -0
    If $$A$$ is a $$2\times 2$$ matrix such that $$A^{2}-4A+3I=0$$, then the inverse of $$A+3I$$ is equal to
    Solution

  • Question 7
    1 / -0
    Let A be a $$3\times 3$$ matrix such that
    $$A\left[ \begin{matrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{matrix} \right] =\left[ \begin{matrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{matrix} \right] $$  Then $${ A }^{ -1 }$$.
  • Question 8
    1 / -0
    If $$A=\left[ \begin{matrix} cos\theta  & -sin\theta  \\ sin\theta  & cos\theta  \end{matrix} \right] { A }^{ 1 }$$ is given by:
    Solution

  • Question 9
    1 / -0
    If a , b and c are all different from zero such that $$\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 0$$, then the matrix A = $$\begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix}$$ is - 
    Solution

  • Question 10
    1 / -0
    If $$\begin{bmatrix} 1 & -\tan { \theta  }  \\ \tan { \theta  }  & 1 \end{bmatrix}{ \begin{bmatrix} 1 & -\tan { \theta  }  \\ \tan { \theta  }  & 1 \end{bmatrix} }^{ -1 }={ \begin{bmatrix} \cos { \alpha  }  & -\sin { \alpha  }  \\ \sin { \alpha  }  & \cos { \alpha  }  \end{bmatrix} }^{ -1 }$$, then $$\alpha $$=
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now