Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If A2 - 2A - I = 0,then inverse of A is:

  • Question 2
    1 / -0

    If a matrix A has inverses B and C, then which one of the following is correct?

  • Question 3
    1 / -0

    For what values of \(k\), the equations:

    \(x+y+z=1\)

    \(2 x+y+4 z=k\)

    \(4 x+y+10 z=k^{2}\)

    have a solution?

  • Question 4
    1 / -0

    Find the value of \(k\) if \(|A|=k\) such that \(A=\left[\begin{array}{cc}2 \cos x & -2 \sin x \\ \sin x & \cos x\end{array}\right]\)?

  • Question 5
    1 / -0

    If a matrix A is such that 3A3+2A2+5A+I=0 then what is A1 equal to?

  • Question 6
    1 / -0

    For what value of \(\alpha \in R\) the system of equation: \(x+2 y+z=3,2 x+4 y+2 z=6\) and \(\alpha x+ \alpha y+ \alpha z=3\alpha\) has infinitely many solutions.

  • Question 7
    1 / -0

    The system of equations:

    \(2 x+y-3 z=5\)

    \(3 x-2 y+2 z=5\) and

    \(5 x-3 y-z=16\)

  • Question 8
    1 / -0

    If \(A ^{-1}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 3 \\ 3 & 1 & 6\end{array}\right]=\frac{\operatorname{adj}( A )}{ k }\), then \(k =?\)

  • Question 9
    1 / -0

    Find the value of \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\)

  • Question 10
    1 / -0

    The cofactor of the element 4 in the determinant \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9\end{array}\right]\) is:

  • Question 11
    1 / -0

    If \(\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\), then \(\left|\mathrm{ABB}^{\prime}\right|=\)

  • Question 12
    1 / -0

    Find the cofactor matrix for the matrix \(A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ -2 & 3 & 5 \\ 4 & -2 & 1\end{array}\right]\)?

  • Question 13
    1 / -0

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1}\)?

  • Question 14
    1 / -0

    The solution of the matrix equation \(\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]\) is:

  • Question 15
    1 / -0

    If \(a_{1}, a_{2}, a_{3},=t_{9}, a_{9}\) are in GP, then what is the value of the following determinant?

    \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

  • Question 16
    1 / -0

    If \({A}=\left[\begin{array}{ll}{x} & 2 \\ 4 & {x}\end{array}\right]\) and det \(\left(A^{2}\right)=64\), then \({x}\) is equal to:

  • Question 17
    1 / -0

    Let A be a non-singular matrix of the order 2 × 2 then |A-1| =

  • Question 18
    1 / -0

    Find the area of triangle with vertices at points A (1, 1) ,B ( 6, 0) and C ( 3, 2).

  • Question 19
    1 / -0

    Find \(M_{13} \times C_{21}+C_{33} \times C_{31}\) for the given matrix \(A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & -1 \\ 3 & 1 & -2\end{array}\right]\), where \(M_{i j}\) and \(C_{i j}\) are the respective minor and co-factor of the element \(a_{i j}\)?

  • Question 20
    1 / -0

    If the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent, then the values of \(k\) are:

  • Question 21
    1 / -0

    If A is a square matrix, then what is adj AT - (adj A)T equal to?

  • Question 22
    1 / -0

    \(2 x-3 y=0\) and \(2 x+\alpha y=0\)

    For what value of \(\alpha\) the system has infinitely many solution.

  • Question 23
    1 / -0

    If \(\omega\) is the cube root of unity, then what is the value of:

    \(\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

  • Question 24
    1 / -0

    Find the \((\operatorname{adj} A)\), if:

    \(A=\left[\begin{array}{lll}3 & 7 & 1 \\ 2 & 1 & 8 \\ 4 & 5 & 0\end{array}\right]\)

  • Question 25
    1 / -0

    If \(A=\left[\begin{array}{lll}8 & 7 & 0 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]\), then find the value of \(\left|A^{-1}\right|\).

  • Question 26
    1 / -0

    A and B are determinants of order of 2, such that A = 3B. If |B| = 1. Find |A|

  • Question 27
    1 / -0

    Consider the following in respect of a non-singular matrix of order 3:

    1. A (adj A) = (adj A) A

    2. |adj A| = |A|

    Which of the above statements is / are correct?

  • Question 28
    1 / -0

    If \(x,y,z\) are all different and not equal to zero and \(\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\) then the value of \(x^{-1}+y^{-1}+z^{-1}\) is equal to:

  • Question 29
    1 / -0

    Find the area of the triangle with vertices (1, -2), (3, 1) and (2, 4).

  • Question 30
    1 / -0

    Find the solution set of p if the given system of linear equations is inconsistent.

    \(3 x+3 y+3 z=3\)

    \(3 x+6 y+12 z=3 p\)

    \(3 x+12 y+30 z=3 p ^2\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 30

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now