Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$A=\begin{bmatrix}5 & 5\alpha  &\alpha  \\ 0 & \alpha  &5\alpha  \\ 0 & 0 &5 \end{bmatrix}$$ If $$\left | A^{2} \right |=25$$, then $$\left |\alpha  \right |$$ equals

  • Question 2
    1 / -0

    The number of distinct real roots of the equation, $$\begin{vmatrix} \cos x& \sin x & \sin x\\ \sin x & \cos x & \sin x\\ \sin x & \sin x & \cos x\end{vmatrix} = 0$$ 

    in the interval $$\left [-\dfrac {\pi}{4}, \dfrac {\pi}{4}\right ]$$ is/are :

  • Question 3
    1 / -0

    The points $$\displaystyle \left( 0, \frac{8}{3} \right), (1, 3)$$ and $$(82, 30)$$ :

  • Question 4
    1 / -0

    If $$A=\begin {bmatrix} 2 & -3\\ -4 & 1\end{bmatrix}$$, then adj $$(3A^2+12A)$$ is  equal to.

  • Question 5
    1 / -0

    $$\mathrm{If}\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=-2$$ and $$\mathrm{f}(\mathrm{x})=$$ $$\begin{vmatrix}1+a^{2}x &(1+b^{2})x &(1+c^{2})x \\(1+a^{2})x&1+b^{2}x &(1+c^{2})x\\(1+a^{2})x&(1+b^{2})x & 1+c^2x\end{vmatrix}$$  then $$f(x)$$ is a polynomial of degree 

  • Question 6
    1 / -0

    If $$\Delta_1 = \begin{vmatrix}x & \sin \theta & \cos \theta\\-\sin \theta & -x & 1\\\cos \theta & 1 &x\end{vmatrix}$$ and $$\Delta_2 = \begin{vmatrix}x & \sin 2\theta & \cos 2\theta\\-\sin 2\theta & -x & 1\\ \cos 2\theta & 1 & x\end{vmatrix}, x \neq 0$$; then for all $$\theta \in \left(0, \dfrac{\pi}{2}\right):$$

  • Question 7
    1 / -0

    Let $$P = [a_{ij}]$$ be a 3 $$\times$$ 3 matrix and let $$Q = [b_{ij}]$$, where $$b_{ij} = 2^{i + j} a_{ij}$$ for $$1 \leq i, j \leq 3$$. If the determinant of P is 2, then the determinant of the matrix Q is

  • Question 8
    1 / -0

    Consider three points $${P}=(-\sin(\beta-\alpha), -\cos\beta) , {Q}=(\cos(\beta-\alpha), \sin\beta)$$ and $${R}=(\cos(\beta-\alpha +\theta), \sin(\beta-\theta))$$ , where $$0< \alpha,\ \beta,\ \theta <\displaystyle \frac{\pi}{4}$$. Then

  • Question 9
    1 / -0

    Directions For Questions

    Let $$p$$ be an odd prime number and $$T_p$$ be the following set of $$2 \times\ 2$$ matrices
    $$T_p = \left \{ A = \begin{bmatrix}a & b\\ c & a\end{bmatrix} : a, b, c \in \{ 0, 1, ......, p - 1 \} \right \}$$

    ...view full instructions

    The number of $$A$$ in $$T_p$$ such that $$A$$ is either symmetric or skew-symmetric or both, and det $$(A)$$ divisible by $$p$$, is

  • Question 10
    1 / -0

    Directions For Questions

    $$\mathrm{A}={\begin{bmatrix}
    1 & 0 & 0\\
    2 & 1 & 0\\
    3 & 2 & 1
    \end{bmatrix}}$$, if $$\mathrm{U}_{1},\ \mathrm{U}_{2}$$ and $$\mathrm{U}_{3}$$ are columns matrices satisfying.
    $$\mathrm{A}\mathrm{U}_{1}={\begin{bmatrix}
    1\\
    0\\
    0
    \end{bmatrix}},\ \mathrm{A}\mathrm{U}_{2}={\begin{bmatrix}
    2\\
    3\\
    0
    \end{bmatrix}},\ \mathrm{A}\mathrm{U}_{3}={\begin{bmatrix}
    2\\
    3\\
    1
    \end{bmatrix}}$$ and $$\mathrm{U}$$ is $$3\times 3$$ matrix whose columns are $$\mathrm{U}_{1},\ \mathrm{U}_{2},\ \mathrm{U}_{3}$$ then answer the following questions

    ...view full instructions

    The value of $$|\mathrm{U}|$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now