Self Studies

Determinants Test - 19

Result Self Studies

Determinants Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$D\mathrm{e}\mathrm{t} \left\{\begin{array}{lll}
    2 & 45 & 55\\
    1 & 29 & 32\\
    3 & 68 & 87
    \end{array}\right\}=\ldots.$$ .
    Solution
    $$Det\begin{bmatrix}
    2 & 45 & 55\\
    1 & 29 & 32\\
    3 & 68 & 87
    \end{bmatrix}=2(29 \times 87 - 68 \times 32)-45(87 - 3 \times 32)+55(68-3 \times 29)$$

    $$= 2\times 347 - 45(-9)+55(-19)$$

    $$=54$$
  • Question 2
    1 / -0
    Find x if it is given that:
    $$\det \left[\begin{array}{lll}
    2 & 0 & 0\\
    4 & 3 & 0\\
    4 & 6 & x
    \end{array}\right]=42$$
    Solution
    Given $$det\begin{pmatrix}
    2 & 0 & 0\\
    4 & 3 & 0\\
    4 & 6 & x
    \end{pmatrix}=42$$
    By operation of matrix (5)
    $$x(6)=42$$
    $$\Rightarrow x=7$$
  • Question 3
    1 / -0
    $$\mathrm{If}$$ $$\left|\begin{array}{lll}
    1 & 0 & 0\\
    2 & 3 & 4\\
    5 & -6 & x
    \end{array}\right|$$ $$= 45$$ $$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}$$ $$\mathrm{x}=$$

    Solution
    Given $$\begin{vmatrix}
    1 & 0 & 0\\
    2 & 3 & 4\\
    5 & -6 & x
    \end{vmatrix}=45$$
    By operation of matrix (5),
    $$1(3x+24)=45$$
    $$3x=21$$
    $$\Rightarrow x=7$$
  • Question 4
    1 / -0
    $$\begin{vmatrix} 4\sin^{2}\theta  & \cos^{2}\theta \\ 3\sec^{2}\theta & \text{cosec}^{2}\theta \end{vmatrix}=$$
    Solution
    The value of $$\begin{vmatrix} 4\sin^{2}\theta  & \cos^{2}\theta  \\ 3\sec^{2}\theta  & \text{cosec}^{2}\theta  \end{vmatrix}$$ is
    $$=4\sin^{2}\theta .\text{cosec}^{2}\theta -3\sec^{2}\theta .\cos^{2}\theta$$
    $$=4-3=1$$
  • Question 5
    1 / -0
    $$Adj \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1  \end{bmatrix}=\begin{bmatrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b  \end{bmatrix}\Rightarrow \left [ a\     b\ \right ]=$$ ____
    Solution
    Given, Adj$$\left[ \begin{matrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{matrix} \right] =\left[ \begin{matrix} 5 & 9 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 6 \end{matrix} \right] $$
    Adjoint of matrix = Transpose of cofactor matrix
    $$C_{11}=\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix}=5$$

    $${ C }_{ 12 }=\begin{vmatrix} -1 & -2 \\ 0 & 1 \end{vmatrix}=1$$

    $${ C }_{ 13 }=\begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix}=-2$$

    $${ C }_{ 21 }=-\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix}=4$$

    $${ C }_{ 22 }=\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}=1$$

    $${ C }_{ 23 }=-\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix}=-2$$

    $${ C }_{ 31 }=\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix}=-4$$

    $${ C }_{ 32 }=-\begin{vmatrix} 1 & 2 \\ -1 & -2 \end{vmatrix}=0$$

    $${ C }_{ 33 }=\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix}=1$$
    Cofactor matrix $$C=\left[ \begin{matrix} 5 & 1 & -2 \\ 4 & 1 & -2 \\ -4 & 0 & 1 \end{matrix} \right] $$
    Adj matrix$$=\left[ \begin{matrix} 5 & 4 & -4 \\ 4 & 1 & 0 \\ -2 & -2 & 1 \end{matrix} \right] =\left[ \begin{matrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{matrix} \right] $$
    $$\left[ \begin{matrix} a & b \end{matrix} \right] =\left[ \begin{matrix} 4 & 1 \end{matrix} \right] $$

  • Question 6
    1 / -0
    If $$A$$ is a $$3\times 3$$ matrix and $$\text{det}  (3A)=k(\text{det}  A)$$, then $$k=$$
    Solution
    The non zero determinant of a scalar multiple of a n×n matrix is given by the following property.
    $$|kA|=kn|A|$$
    ⟹$$|3A|=3^3|A|=27|A|$$
    $$k=27$$
  • Question 7
    1 / -0

    Directions For Questions

    Based on this information answer the questions given below.
    Two $$n\times n$$ square matrices A and B are said to be similar if there exists a non-singular matrix P such that 
    $$P^{-1}A  P=B$$

    ...view full instructions

    If A and B are similar matrices such that $$det  (AB)=0, $$ then 
    Solution
    Given. two n$$\times$$n square matrices A and B
    Given, $$B=P^{-1}AP$$
    $$det\left( B \right) =det\left( { P }^{ -1 }AP \right) $$
    $$det\left( B \right) =det\left( { P }^{ -1 }AP \right) $$
    $$det\left( B \right) =\left( det\left( { P } \right)  \right) ^{ -1 }\left( det\left( A \right)  \right) \left( det\left( P \right)  \right) $$
    $$det\left( B \right) =\left( det\left( { P } \right)  \right) ^{ -1 }\left( det\left( A \right)  \right) \left( det\left( P \right)  \right) $$
    $$det\left( B \right) =det\left( A \right) $$
    $$det\left( AB \right) =\left( det\left( A \right)  \right) \left( det\left( B \right)  \right) $$
    If$$\left( det\left( A \right)  \right) =0$$ then $$\left( det\left( B \right)  \right) $$ also zero.
  • Question 8
    1 / -0
    $$\displaystyle \begin{vmatrix}cos\: C &tan\: A  &0 \\ sin\: B &0  &-tan\: A \\ 0 &sin\: B  &cos\: C \end{vmatrix}$$ has the value
    Solution
    $$\begin{vmatrix} cos\: C & tan\: A & 0 \\ sin\: B & 0 & -tan\: A \\ 0 & sin\: B & cos\: C \end{vmatrix}\\$$

    $$ =cosC\left( tanAsinB \right) -tanA\left( sinBcosC \right) \\ $$

    $$=0$$

    Hence, option 'A' is correct.
  • Question 9
    1 / -0
    Two $$n\times n$$ square matrices A and B are said to be similar if there exists a non-singular matrix P such that $$P^{-1}A  P=B$$.
    If A and B are similar matrices such that $$det  (A)=1$$, then
    Solution
    Given, two n$$\times$$n  square matrices A and B
    Given, $$B=P^{-1}AP$$
    $$det\left( B \right) =det\left( { P }^{ -1 }AP \right) $$
    $$det\left( B \right) =\left( det\left( { P }^{ -1 } \right)  \right) \left( det\left( A \right)  \right) \left( det\left( P \right)  \right) $$
    $$det\left( B \right) =\left( det\left( { P } \right)  \right) ^{ -1 }\left( det\left( A \right)  \right) \left( det\left( P \right)  \right) $$                   $$[\because \quad|A||A^{-1}|=|AA^{-1}|=|I|=1]$$
    $$det\left( B \right) =det\left( A \right) =1$$
  • Question 10
    1 / -0
    If$$\displaystyle \left | \begin{matrix}-12 &0   &\lambda  \\  0&  2& -1\\  2& 1 &15 \end{matrix} \right |=-360$$, then the value of $$\lambda$$,is
    Solution
    $$\left| \begin{matrix} -12 & 0 & \lambda  \\ 0 & 2 & -1 \\ 2 & 1 & 15 \end{matrix} \right| =-360$$

    Expanding along first column

    $$\Rightarrow (-12)(31)-4\lambda =-360$$

    $$\Rightarrow \lambda =-3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now