Given, Adj$$\left[ \begin{matrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{matrix} \right] =\left[ \begin{matrix} 5 & 9 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 6 \end{matrix} \right] $$
Adjoint of matrix = Transpose of cofactor matrix
$$C_{11}=\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix}=5$$
$${ C }_{ 12 }=\begin{vmatrix} -1 & -2 \\ 0 & 1 \end{vmatrix}=1$$
$${ C }_{ 13 }=\begin{vmatrix} -1 & 1 \\ 0 & 2 \end{vmatrix}=-2$$
$${ C }_{ 21 }=-\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix}=4$$
$${ C }_{ 22 }=\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}=1$$
$${ C }_{ 23 }=-\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix}=-2$$
$${ C }_{ 31 }=\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix}=-4$$
$${ C }_{ 32 }=-\begin{vmatrix} 1 & 2 \\ -1 & -2 \end{vmatrix}=0$$
$${ C }_{ 33 }=\begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix}=1$$
Cofactor matrix $$C=\left[ \begin{matrix} 5 & 1 & -2 \\ 4 & 1 & -2 \\ -4 & 0 & 1 \end{matrix} \right] $$
Adj matrix$$=\left[ \begin{matrix} 5 & 4 & -4 \\ 4 & 1 & 0 \\ -2 & -2 & 1 \end{matrix} \right] =\left[ \begin{matrix} 5 & a & -2 \\ 1 & 1 & 0 \\ -2 & -2 & b \end{matrix} \right] $$
$$\left[ \begin{matrix} a & b \end{matrix} \right] =\left[ \begin{matrix} 4 & 1 \end{matrix} \right] $$