Self Studies

Determinants Test - 21

Result Self Studies

Determinants Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points which are not collinear are:
    Solution
    $$ Let\quad us\quad take\quad three\quad points\quad A,\quad B\quad \& \quad C.\\ Three\quad points\quad A,\quad B\quad \& \quad C\quad will\quad be\quad collinear\\ If\quad AB+BC=AC.\\ Three\quad points\quad A,\quad B\quad \& \quad C\quad will\quad not\quad be\quad collinear\\ If\quad AB+BC=AC.\\ Let\quad us\quad investigate\quad thr\quad given\quad options.\\ Option\quad A\longrightarrow The\quad points\quad are\\ A(0,1)\quad B(8,3)\quad \& \quad C(6,7).\\ \therefore \quad AB=\sqrt { { \left( 0-8 \right)  }^{ 2 }+{ \left( 1-3 \right)  }^{ 2 } } units=\sqrt { 68 } =8.25units,\\ \quad \quad \quad BC=\sqrt { { \left( 8-6 \right)  }^{ 2 }+{ \left( 3-7 \right)  }^{ 2 } } units=\sqrt { 28 } =5.29units,\\ and\quad AC=\sqrt { { \left( 0-6 \right)  }^{ 2 }+{ \left( 1-7 \right)  }^{ 2 } } units=\sqrt { 72 } =8.49units.\\ \therefore \quad AB+BC=\left( 8.25+5.29 \right) units.=13.54units.\\ So\quad AB+BC\neq AC.\\ \therefore \quad A,\quad B\quad \& \quad C\quad are\quad not\quad collinear.\\ Option\quad B\longrightarrow The\quad points\quad are\\ A(4,3)\quad B(5,1)\quad \& \quad C(1,9).\\ \therefore \quad AB=\sqrt { { \left( 4-5 \right)  }^{ 2 }+{ \left( 3-1 \right)  }^{ 2 } } units=\sqrt { 5 } =2.24units,\\ \quad \quad \quad BC=\sqrt { { \left( 5-1 \right)  }^{ 2 }+{ \left( 1-9 \right)  }^{ 2 } } units=\sqrt { 80 } =8.94units,\\ and\quad AC=\sqrt { { \left( 4-1 \right)  }^{ 2 }+{ \left( 3-9 \right)  }^{ 2 } } units=\sqrt { 45 } =6.71units.\\ \therefore \quad AB+AC=\left( 2.24+6.71 \right) units=8.95units.\\ So\quad AB+AC=BC.\\ \therefore \quad A,\quad B\quad \& \quad C\quad are\quad \quad collinear.\\ Option\quad C\longrightarrow The\quad points\quad are\\ A(2,5)\quad B(-1,2)\quad \& \quad C(4,7).\\ \therefore \quad AB=\sqrt { { \left( 2+1 \right)  }^{ 2 }+{ \left( 5-2 \right)  }^{ 2 } } units=\sqrt { 18 } units=4.24units,\\ \quad \quad \quad BC=\sqrt { { \left( -1-4 \right)  }^{ 2 }+{ \left( 2-7 \right)  }^{ 2 } } units=\sqrt { 50 } units=7.07units,\\ and\quad AC=\sqrt { { \left( 2-4 \right)  }^{ 2 }+{ \left( 5-7 \right)  }^{ 2 } } units=\sqrt { 8 } units=2.83units.\\ \therefore \quad AB+AC=\left( 4.24+2.83 \right) units=7.07units.\\ So\quad AB+AC=BC.\\ \therefore \quad A,\quad B\quad \& \quad C\quad are\quad \quad collinear.\\ Option\quad C\longrightarrow The\quad points\quad are\\ A(-3,2)\quad B(1,-2)\quad \& \quad C(9,-10).\\ \therefore \quad AB=\sqrt { { \left( -3-1 \right)  }^{ 2 }+{ \left( 2+2 \right)  }^{ 2 } } units=\sqrt { 32 } units=5.66units,\\ \quad \quad \quad BC=\sqrt { { \left( 1-9 \right)  }^{ 2 }+{ \left( -2+10 \right)  }^{ 2 } } units=\sqrt { 128 } units=11.31units,\\ and\quad AC=\sqrt { { \left( -3-9 \right)  }^{ 2 }+{ \left( 2+10 \right)  }^{ 2 } } units=\sqrt { 288 } units=16.97units.\\ \therefore \quad AB+BC=\left( 5.66+11.31 \right) units=16.97units.\\ So\quad AB+BC=AC.\\ \therefore \quad A,\quad B\quad \& \quad C\quad are\quad \quad collinear.\\ Ans-\quad Option\quad A.\\ \\ \\  $$
  • Question 2
    1 / -0
    If $$A=\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$, then $$\left| A+{ A }^{ T } \right| $$ equals
    Solution
    $$A+{A}^{T}=\begin{bmatrix} a & b \\ b & a \end{bmatrix}\begin{bmatrix} a & b \\ b & a \end{bmatrix}=\begin{bmatrix} 2a & 2b \\ 2b & 2a \end{bmatrix}$$

    $$\left| A+{ A }^{ T } \right| =4{ a }^{ 2 }-4{ b }^{ 2 }\quad $$

    Ans: A
  • Question 3
    1 / -0
    If $$\Delta_1=\begin{vmatrix} 1 & 0\\ a & b\end{vmatrix}$$ and $$\Delta_2=\begin{vmatrix} 1 & 0\\ c & d\end{vmatrix}$$ then $$\Delta_2 \Delta_1$$ is equal to
    Solution
    $$\Delta_1=\begin{vmatrix} 1 & 0\\ a & b\end{vmatrix}=1.b-0.a=b$$
    $$\Delta_2=\begin{vmatrix} 1 & 0\\ c & d\end{vmatrix}=1.d-0.c=d$$
    then $$\Delta_2 \Delta_1=bd$$

    Ans: B
  • Question 4
    1 / -0
    If $$A$$ and $$B$$ are two matrices of same order $$3\times 3$$, where
    $$A=\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 6 & 8 \end{bmatrix}$$ and $$B=\begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 8 \\ 7 & 2 & 9 \end{bmatrix}$$
    The value of $$\text{Adj} (\text{Adj}\, A)$$ is equal to
    Solution
    $$\left| A \right| =1\left( 3\times8-4\times6 \right) -2\left( 2\times8-5\times4 \right) +3\left( 2\times6-5\times3 \right) =-1$$
    Use following results
    $$\text{Adj} (\text{Adj}\, A)={ \left| A \right|  }^{ n-2 }A \Rightarrow \text{Adj}(\text{Adj}\,A)={ \left| A \right|  }^{ n-2 }A={ \left( -1 \right)  }^{ 1 }A=-A$$

    Ans: $$A$$
  • Question 5
    1 / -0
    If $$\omega$$ is a cube root of unity and $$\Delta=\begin{vmatrix}1 & 2\omega \\ \omega & \omega^2\end{vmatrix}$$, then $$\Delta^2$$ is equal to
    Solution
    $$\Delta=\omega^2-2\omega^2=-\omega^2$$
    $$\Delta^2=\omega^4=\omega$$

    Ans: B
  • Question 6
    1 / -0
    If $$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix}=\begin{vmatrix} 6 & 2 \\ 3x & 6 \end{vmatrix}$$, then $$x$$ is equal to
    Solution
    $$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix}=\begin{vmatrix} 6 & 2 \\ 3x & 6 \end{vmatrix}$$
    $$\Rightarrow x^2-36=36-6x$$
    $$\Rightarrow x^2+6x-72=0$$
    $$\Rightarrow \displaystyle x=\frac{-6\pm\sqrt{6^2+4\times 72}}{2}$$
    $$\quad \displaystyle =\frac{-6\pm \sqrt{36(1+8)}}{2}$$
    $$\quad =-3\pm 9=6\ or\ -12$$
  • Question 7
    1 / -0
    Which of the following is correct?
    Solution
    Determinant is defined only for a square matrix.
    and its denotes the value of that square matrix.
  • Question 8
    1 / -0
    If $$|A|  \displaystyle \neq    0$$, then $$A$$ is
    Solution
    If $$|A| \neq  0$$ then by definition, $$A$$ is non-singular matrix
  • Question 9
    1 / -0
    What is the determinant of the matrix $$\left [\begin{matrix} 3& 6\\ -1 & 2\end {matrix} \right]$$?
    Solution
    Given,
    $$\begin{vmatrix} 3 & 6 \\ -1 & 2 \end{vmatrix}$$
    Let determinent be $$\left| d \right| $$
    Value of $$\left| d \right| $$ will be
    $$\left| d \right| $$$$=$$$$3\times 2-\left( 6\times -1 \right) $$
        $$=6+6=12$$
  • Question 10
    1 / -0
    If $$A = \begin{bmatrix} 1& \log_{b}a\\ \log_{a}b & 1\end{bmatrix}$$ then $$|A|$$ is equal to
    Solution
    On solving the given matrix,
    $$|A| = 1 - \log_{a}b . \log_{b}a = 1 - 1 = 0$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now