Self Studies

Determinants Test - 23

Result Self Studies

Determinants Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The point $$(-a,-b),(0,0),(a,b)$$ and $$(a^{2},ab)$$ are-
    Solution
    The equation of line passing through points $$\left( {0,0} \right)$$ and $$\left( {a,b} \right)$$ is given by

    $$\begin{array}{l} L:\left( { y-0 } \right) =\frac { { b-0 } }{ { a-0 } } \left( { x-0 } \right)  \\ \Rightarrow y=\frac { b }{ a } x \\ \Rightarrow ay=bx \\ \Rightarrow L:bx-ay=0 \end{array}$$

    Putting $$\left( { - a, - b} \right)$$ in $$R.H.S$$

    we get

    $$L: - ab - a\left( { - b} \right)$$  Satisfied $$L$$ $$\left( { - a, - b} \right)$$ lies on $$L$$

    Now Putting  $$\left( { { a^{ 2 } },ab } \right) $$ in $$R.H.S$$

    we get  

    $$L:b\left( { { a^{ 2 } } } \right) -a\left( { ab } \right) -{ a^{ 2 } }b=0$$

    Therefore, $$\left( { { a^{ 2 } },ab } \right) $$ Satisfies $$L$$ 

    So $$\left( { { a^{ 2 } },ab } \right) $$ lies on $$L$$

    Hence The points  $$\left( { 0,0 } \right) ,\left( { a,b } \right) ,\left( { -a,-b } \right) ,\left( { { a^{ 2 } },ab } \right) $$ are Collinear. So the option $$(A)$$ is the correct answer.








  • Question 2
    1 / -0
    $$A=\begin{bmatrix} 5 & 5a & a \\ 0 & a & 5a \\ 0 & 0 & 5 \end{bmatrix}$$ If $$\left| A^{ 2 } \right| =25$$ then $$|a|=$$
    Solution
    $$A=\left[ { \begin{array} { *{ 20 }{ c } }5 & { 5a } & a \\ 0 & a & { 5a } \\ 0 & 0 & 5 \end{array} } \right] $$
    $$\left| A \right| =\left[ { \begin{array} { *{ 20 }{ c } }5 & { 5a } & a \\ 0 & a & { 5a } \\ 0 & 0 & 5 \end{array} } \right] =25a$$
    $$|A^2|=|A|^2=25$$
    $$(25a)^2=25$$
    $$a=\pm \frac{1}{5}$$
    $$|a|=\frac{1}{5}$$
  • Question 3
    1 / -0
    The value of (adj $$A$$) is equal to
    Solution
    The value of (adj  A) is equal to $$2A$$.
    Option $$A$$ is correct answer.
  • Question 4
    1 / -0
    Two points $$(a, 0)$$ and $$(0, b)$$ are joined by a straight line. Another point on this line is
    Solution
    Given that $$(a,0)$$ and $$(0,b)$$ lie on a straight line.

    We know that a straight line is represented by $$y=mx+c$$
    Substituting co-ordinates in equation, we get
    $$(1) 0 = am + c$$
    $$(2) b = a(0) + c = c$$

    $$\Rightarrow m = \dfrac{-b}{a} , c = b$$

    $$\therefore$$ Equation of line is $$ay = ab - bx$$

    Substituting options we see that $$(3a,-2b)$$ lies on this line 
  • Question 5
    1 / -0
    First row of the matrix $$A$$ is $$\begin{bmatrix}1& 3 & 2\end{bmatrix}$$. If $$adj (A)$$ =\begin{bmatrix}-2 & 4 & a\\ -1& 2 & 1\\ 3a& -5 &-2 \end{bmatrix} then a possible value of $$det(A)$$ is
    Solution
    $$|A|=a_{11}A_{11}+a_{12}A_{21}+a_{13}A_{31}$$

    $$|A|=1(-2)+3(-1)+2(3\alpha)$$

    $$|A|=-5+6\alpha$$

    $$adj \ A =\begin{bmatrix} -2 & 4 & \alpha \\ -1 & 2 & 2 \\ 3\alpha & -5 & -2 \end{bmatrix}$$

    $$|adj \ A|=-2(-4+5)-4(2-3\alpha)+\alpha(5-6\alpha)$$

    $$=-2-8+12\alpha +5\alpha - 6\alpha^2$$

    $$|A|^2=-6\alpha^2 +17\alpha-10$$

    $$(6\alpha-5)^2=-6\alpha^2 +17\alpha-10$$

    $$36\alpha^2 +25-60\alpha = -6\alpha^3 +17\alpha -10$$

    $$42 \alpha^2 -77\alpha +35=0$$

    $$6\alpha^2-11\alpha+5=0$$

    $$(6\alpha-5)(\alpha-1)=0$$

    $$\alpha=\dfrac{5}{6}$$ or $$\alpha=1$$

    $$|A|=-5+6\alpha$$

    When, $$\alpha=\dfrac{5}{6}, |A|=0$$

    When, $$\alpha=1, |A|=1$$
  • Question 6
    1 / -0
    $$\begin{vmatrix} 2^3 & 3^3 & 3.2^2+3.2+1\\ 3^3 & 4^3 & 3.3^2+3.3+1\\ 4^3 & 5^3 & 3.4^2+3.4+1\end{vmatrix}$$ is equal to?
    Solution
    $$\begin{array}{l} \left| { \begin{array} { *{ 20 }{ c } }{ { 2^{ 3 } } } & { { 3^{ 3 } } } & { 3\cdot { 2^{ 2 } }+3\cdot 2+1 } \\ { { 3^{ 3 } } } & { { 4^{ 3 } } } & { 3\cdot { 3^{ 2 } }+3\cdot 3+1 } \\ { { 4^{ 3 } } } & { { 5^{ 3 } } } & { 3\cdot { 4^{ 2 } }+3\cdot 4+1 } \end{array} } \right|  \\ \left| { \begin{array} { *{ 20 }{ c } }{ { 2^{ 3 } } } & { { 3^{ 3 } } } & { { 3^{ 3 } }-{ 2^{ 3 } } } \\ { { 3^{ 3 } } } & { { 4^{ 3 } } } & { { 4^{ 3 } }-{ 3^{ 3 } } } \\ { { 4^{ 3 } } } & { { 5^{ 3 } } } & { { 5^{ 3 } }-{ 4^{ 3 } } } \end{array} } \right|  \\ { C_{ 3 } }\to { C_{ 3 } }+{ C_{ 1 } } \\ \left| { \begin{array} { *{ 20 }{ c } }{ { 2^{ 3 } } } & { { 3^{ 3 } } } & { { 3^{ 3 } } } \\ { { 3^{ 3 } } } & { { 4^{ 3 } } } & { { 4^{ 3 } } } \\ { { 4^{ 3 } } } & { { 5^{ 3 } } } & { { 5^{ 3 } } } \end{array} } \right| =0 \end{array}$$
  • Question 7
    1 / -0
    If $$P=\begin{bmatrix} 1 & \alpha & 3\\ 1 & 3 & 3\\ 2 & 4 & 4\end{bmatrix}$$ is a $$3\times 3$$ matrix A and $$|A|=4$$, then $$\alpha$$ is equal to?
    Solution

  • Question 8
    1 / -0
    The determinant $$\left| {\begin{array}{*{20}{c}}a&b&{a\alpha  + b}\\b&c&{b\alpha  + c}\\{a\alpha  + b}&{b\alpha  + c}&0\end{array}} \right|$$ is equal to zero, if-

    Solution
    $$\begin{vmatrix} a & b & a\alpha +b \\ b & c & b\alpha +c \\ a\alpha +b & b\alpha +c & 0 \end{vmatrix}=0$$
    By expanding matrix,
    $$a(c(0)-(b\alpha+c)(b\alpha+c))-b(b(0)-(a\alpha+b)(b\alpha+c))+(a\alpha+b)(b(b\alpha+c)-c(a\alpha+b))=0$$
    $$(a\alpha+b)(b^2\alpha+bc-ac\alpha-bc)=a(b\alpha+c)^2-b(a\alpha+b)(b\alpha+c)$$
    $$(a\alpha+b)(b^2\alpha-ac\alpha)=(a(b\alpha+c)-b(a\alpha+b))(b\alpha+c)$$
    $$(a\alpha+b)((b^2-ac)\alpha)=(ab\alpha+ac-ba\alpha+b^2))(b\alpha+c)$$
    $$(a\alpha+b)(b^2-ac)\alpha=(ac-b^2)(b\alpha+c)$$
    $$(a\alpha+b)(-1)\alpha=(b\alpha+c)$$
    $$-a\alpha^2-b\alpha=b\alpha+c$$
    $$a\alpha^2+2b\alpha+c=0$$
    Hence , $$(x-\alpha) $$ is a factor of $$ax^2+2bx+c$$

  • Question 9
    1 / -0
    $$A = \left[ \begin{array}{l}1\,\,\,\,\,\,\,\,1\\3\,\,\,\,\,\,\,4\end{array} \right]$$ and $$A\left( {adj\,A} \right) = KI$$, then the value of $$'K'$$
    Solution

  • Question 10
    1 / -0
    The value of determinant $$ \begin{vmatrix} 19 & 6 & 7 \\ 21 & 3 & 15 \\ 28 & 11 & 6 \end{vmatrix} $$ is :
    Solution
    $$ \begin{vmatrix} 19 & 6 & 7 \\ 21 & 3 & 15 \\ 28 & 11 & 6 \end{vmatrix} $$ 
    $$ = 19(3\times 6-11\times 15 ) $$
    $$ -6(21\times 6-15\times 28) $$
    $$ +7(21\times 11-3\times 28) $$
    $$ = 19(-147)-6(-294) $$
    $$ +7(147) $$
    $$ = 0 $$ 

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now