Self Studies

Determinants Test - 25

Result Self Studies

Determinants Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vectorial angle of a point $$P$$ on the line joining the points $$(r_{1}, \theta _{1})$$ and $$(r_{2},\theta _{2})$$ is $$\dfrac{\theta_{1} +\theta _{2}}{2}$$ then the length of radius vector of $$P$$ is
    Solution
    Given points are $$A(r_{1},\theta_{1}),B(r_{2},\theta_{2})$$
    Eq of line passing through two given points is given by:
    $$y-y_{1}=\cfrac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})$$
    $$\therefore y-\theta_{1}=\cfrac{\theta_{2}-\theta_{1}}{r_{2}-r_{1}}(x-r_{1})$$
    Now, angle between point P and line is $$\cfrac{\theta_{1}+\theta_{2}}{2}$$
    Let point P meet at point Q on the line. 
    The radius will be $$R=PQ\cos\theta$$
    $$\therefore R=PQ\cos(\cfrac{\theta_{1}+\theta_{2}}{2})$$
  • Question 2
    1 / -0
    $$\mathrm{D}\mathrm{e}\mathrm{t} \left\{\begin{array}{lll}
    1^{2} & 2^{2} & 3^{2}\\
    2^{2} & 3^{2} & 4^{2}\\
    3^{2} & 4^{2} & 5^{2}
    \end{array}\right\}=\ldots$$.
    Solution
    $$Det\begin{pmatrix}
    1^2 & 2^2 & 3^2\\
    2^2 & 3^2 & 4^2\\
    3^2 & 4^2 & 5^2
    \end{pmatrix}=det\begin{bmatrix}
    1 & 4 & 9\\
    4 & 9 & 16\\
    9 & 16 & 25
    \end{bmatrix}$$

    $$= 1(25 \times 9 - 16^2)-4[4 \times 25 - 9 \times 16]+9[4 \times 16 - 9^2]$$

    $$=225 - 256- 400 + 576 + 576-729$$

    $$=-8$$

  • Question 3
    1 / -0
    $$\det \left[\begin{array}{lll}
    18 & 40 & 89\\
    40 & 89 & 198\\
    89 & 198 & 440
    \end{array}\right]=$$ 
    Solution
    Det $$\displaystyle \begin{bmatrix} 18 & 40 & 89 \\ 40 & 89 & 198 \\ 89 & 198 & 440 \end{bmatrix}=\begin{vmatrix} 18 & 40 & 89 \\ 40 & 89 & 198 \\ 89 & 198 & 440 \end{vmatrix}$$

    $$\displaystyle =18\left( 89\times 440-189\times 198 \right) $$ $$\displaystyle -40\left( 40\times 440-89\times 198 \right) $$ $$\displaystyle + 89\left( 40\times 198-89\times 89 \right) $$

    $$\displaystyle =18\times 89\times 440-18\times 198\times 198$$ $$\displaystyle -{ \left( 40 \right)  }^{ 2 }\times 440+40\times 89\times 198$$ $$\displaystyle +89\times 40\times 198-{ \left( 89 \right)  }^{ 3 }=-1$$
  • Question 4
    1 / -0
    If the entries in a $$3\times 3$$ determinant are either $$0$$ or 1, then the greatest value of their determinats is:
    Solution
    Case I: If all the entries in one row are 0 , then the determinant is 0.
    Case II: If all the entries in one row are 1 , then the maximum value of determinant is 1.
    $$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

    Case II:If exactly one 1 is in one row, then the maximum value is 1.
    $$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

    Case III:If exactly two 1 is in one row, then the maximum value is 2.
    $$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

    Hence, the largest value of the determinant with entries either 0 or 1 is 2.
  • Question 5
    1 / -0
    The value of $$\left|\begin{array}{ll}
    2+i & 2-i\\
    1+i & 1-i
    \end{array}\right|$$ is:
    Solution
    Let $$A=\begin{vmatrix}
    2+i & 2-i\\
    1+i & 1-i
    \end{vmatrix}$$

    $$det A=(2+i)(1-i)-(2-i)(1+i)$$

    $$=2-2i+i-i^2-(2+2i-i-i^2)$$

    $$=3-i-(3+i)=-2i$$

    $$\Rightarrow det A= -2i\Rightarrow A $$ complex quantity.
  • Question 6
    1 / -0
    $$\left|\begin{array}{lll}
    1 & \omega & \omega^{2}\\
    \omega & \omega^{2} & 1\\
    \omega^{2} & 1 & \omega
    \end{array}\right|=\ldots$$....(where $$\omega$$ is the cube root of unity)
    Solution
    $$\Rightarrow w$$ is cube root of unity 
    $$\Rightarrow w^3-1=0$$

    By operation of matrix, (5),
    $$\begin{vmatrix}
    1 & w & w^2\\
    w & w^2 & 1\\
    w^2 & 1 & w
    \end{vmatrix}=1(w^3-1)-w(w^2-w^2)+w^2(w-w^4)$$ $$=2w^3-1-w^6=2-1-1=0$$

  • Question 7
    1 / -0
    If$$ A=\left\{\begin{array}{ll}
    1 & 4\\
    2 & 8
    \end{array}\right\}$$ and $$B=\left\{\begin{array}{ll}
    x & y\\
    y & x
    \end{array}\right\}$$ then the cofactor of $$\mathrm{a}_{21}$$ in $$\mathrm{A}\mathrm{B}$$ is:
    Solution
    Given $$A=\begin{pmatrix}
    1 & 4\\
    2 & 8
    \end{pmatrix} $$and $$B=\begin{pmatrix}
    x & y\\
    y & x
    \end{pmatrix}$$

    So, By operation of multiplication,

    $$AB=\begin{pmatrix}
    x+4y & y+4x\\
    2x+8y & 2y+8x
    \end{pmatrix}$$

    So, By property of minor (2),

    $$M_{21}=$$minor of $$a_{21}=|2x + 8y|$$

    So, cofactor of $$a_{21}=M_{21}(-1)^{2+1}=-M_{21}=-2x-8y$$
  • Question 8
    1 / -0
    lf $$A=\left\{\begin{array}{lll}
    a & c & b\\
    b & a & c\\
    c & b & a
    \end{array}\right\}$$ then the cofactor of $$a_{32}$$ in $$\mathrm{A}+\mathrm{A}^{\mathrm{T}}$$  is

    Solution
    By property of transpose, we get
    $$A^{T}=\begin{bmatrix}
    a & b & c\\
    c & a & b\\
    b & c & a
    \end{bmatrix}$$
    So, $$A+A^{T}=\begin{bmatrix}
    2a & b+c & b+c\\
    b+c & 2a & b+c\\
    c+b & b+c & 2a
    \end{bmatrix}$$
    So, $$ M_{32}=$$ minor of $$a_{32}=\begin{vmatrix}
    2a & b+c\\
    b+c & c+c
    \end{vmatrix}=2a(b+c)-(b+c)^2$$
    $$=2ab+2ac-b^2-c^2-2bc$$
    So, cofactor of $$a_{32}=M_{32}(-1)^{3+2}$$
    $$=-M_{32}$$
    $$=-[2a(b+c)-(b+c)^2]$$
  • Question 9
    1 / -0
    If $$A=\left[\begin{array}{lll}
    1^{2} & 2^{2} & 3^{2}\\
    2^{2} & 3^{2} & 4^{2}\\
    3^{2} & 4^{2} & 5^{2}
    \end{array}\right]$$, then the minor of $$\mathrm{a}_{22}$$ is
    Solution
    Given, $$A=\begin{bmatrix}
    1^2 & 2^2 & 3^2\\
    2^2 & 3^2 & 4^2\\
    3^2 & 4^2 & 5^2
    \end{bmatrix}$$
    So, By property of minor (1),
    minor of $$a_{22}=M_{22}(-1)^{2+2}=M_{22}$$
    $$=\begin{vmatrix}
    1^2 & 3^2\\
    3^2 & 5^2
    \end{vmatrix}$$
    $$=25 - 9 \times 9$$
    $$=-56$$
  • Question 10
    1 / -0
    $$\left|\begin{array}{lll}
    \mathrm{a}+\mathrm{b} & \mathrm{a} & \mathrm{b}\\
    \mathrm{a} & \mathrm{a}+\mathrm{c} & \mathrm{c}\\
    \mathrm{b} & \mathrm{c} & \mathrm{b}+\mathrm{c}
    \end{array}\right|=$$
    Solution
    $$\begin{vmatrix}
    a+b & a & b\\
    a & a+c & c\\
    b & c & b+c
    \end{vmatrix}$$
    $$=(a+b)[(a+c)(b+c)-c^2]-a[ab+ac-bc]+b[ac-ab-bc]$$
    $$=(a+b)[ab+ac+cb]-a^2b-a^2c+abc+abc-ab^2-b^2c$$
    $$=a^2b+a^2c+abc+ab^2+abc+cb^2+abc+cb^2-a^2b-a^2c+abc+abc-ab^2-b^2c$$
    $$=4abc$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now