Self Studies

Determinants Test - 30

Result Self Studies

Determinants Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If A = $$\begin{bmatrix}
    a & b\\
     c& d
    \end{bmatrix}$$ (where $$b\neq c$$) and satisfies the equation $$A^{2}+kI=0$$, then 
    Solution
    Given, $$A^{2}+kI = 0$$
    $$A^{2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} { a }^{ 2 }+bc & b(a+d) \\ c(a+d) & d^{ 2 }+bc \end{bmatrix}$$
    If we take a $$2 \times 2$$ identical matrix $$I$$, then $$ \displaystyle kI = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
    From equation $$A^{2}+kI=0$$, we get $$A^{2}= -kI \Rightarrow A^2= \begin{bmatrix} -k & 0 \\ 0 & -k \end{bmatrix}$$
    $$a^{2}+bc = -k....(1)$$,
    $$b(a+d) = 0....(2)$$
    $$c(a+d) = 0....(3)$$,
    $$d^{2}+bc = -k....(4)$$,

    From $$(2)$$ and $$(3)$$ we get $$a+d = 0$$ ($$ \because b \neq c$$)
    and $$det(A^{2}) = k^2$$
    $$det(A) =ad-bc= -a^2-bc=k $$  (from $$(1)$$)
    Options A and C are correct.
  • Question 2
    1 / -0

    If in a $$\displaystyle \Delta ABC; \frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}=k$$, then $$
    \begin{vmatrix}-1/k & 25 & 19\\ 25 & -1/k & 7\\ 19 & 7 & -1/k\end{vmatrix}=$$
    Solution
    $$\triangle =\begin{vmatrix} \cfrac { -1 }{ K }  & 25 & 19 \\ 25 & \cfrac { -1 }{ K }  & 7 \\ 19 & 7 & \cfrac { -1 }{ K } \end{vmatrix}$$
    $$\triangle =\left( \cfrac { 1 }{ { K }^{ 2 } } -49 \right) +25\left( \cfrac { 25 }{ K } -133 \right) +19\left( 175+\cfrac { 19 }{ K }  \right) $$
    $$\triangle =\cfrac { 1 }{ { K }^{ 2 } } -49+\cfrac { 986 }{ K } $$
    $$\cfrac { \cos { A }  }{ 7 } =\cfrac { \cos { B }  }{ 19 } =\cfrac { \cos { C }  }{ 25 } =K$$
    $$\Rightarrow \triangle =0$$
  • Question 3
    1 / -0
    STATEMENT 1: In a $$\Delta ABC,\ a,\ b,\ c$$ denotes lengths of the sides and $$\begin{vmatrix}a & b & c\\ b & c & a\\ c & a & b\end{vmatrix}=0$$ then the triangle is equilateral triangle.

    STATEMENT 2: Sum of three non-negative numbers $$=0\Rightarrow $$ each number is zero.
    Solution
    $$\begin{vmatrix}
    a &b  &c \\ 
     b&c  &a \\ 
     c&a  &           b        
    \end{vmatrix}$$
    $$=0$$ 
    $$R_{1}\rightarrow  R_{1} +R_{2}+R_{3}$$
    $$\begin{vmatrix}
    (a+b+c) &(a+b+c)  &(a+b+c) \\
     b&c  &a \\
     c&a  &b
    \end{vmatrix}$$
    $$=0$$
    $$\begin{vmatrix}
     1&  1& 1\\
     b&  c&a \\   
     c&a  &b
    \end{vmatrix}$$
    $$=0$$
    $$a+b+c =0\ ,   b, c,a > 0$$
    $$\therefore a=b=c = 0$$

  • Question 4
    1 / -0
    If f (x) = tan x and A, B, C are the angles of $$\Delta ABC$$, then $$\begin{vmatrix}
    f(A) & f(\pi /4) & f(\pi /4)\\
    f(\pi /4) &f(B) & f(\pi /4)\\
    f(\pi /4) &f(\pi /4) & f(C)
    \end{vmatrix}$$ 

    Solution
    Given $$f(x)= \tan x,$$So,
    Let, $$A=\begin{vmatrix}
    f(A) & f(\pi/4) & f(\pi/4)\\
    f(\pi/4) & f(B) & f(\pi/4)\\
    f(\pi/4) & f(\pi/4) & f(c)
    \end{vmatrix}$$
    $$A=\begin{vmatrix}
    \tan A & 1 & 1\\
    1 & \tan B & 1\\
    1 & 1 & \tan c
    \end{vmatrix}$$
    So, $$A=\tan A(\tan B \tan c-1)-1(\tan c-1)+1(1-\tan B)$$
    $$=\tan A \tan B \tan C +2 -\tan A-\tan C -\tan B$$
    By property of triangle  $$\Delta ABC$$
    $$\angle (A+B+C) =180 ^{\circ}$$
    So, $$\tan (A+B+C)=0$$
    So, $$\tan A \tan B \tan C=\tan A + \tan C +\tan B$$
    $$\therefore A=2+0=2$$
  • Question 5
    1 / -0
    If $$\mathrm{a}\neq b\neq \mathrm{c}$$ and if $$ax+by+\mathrm{c}=0\  bx+cy+\mathrm{a}=0$$ and $$cx+ay+b=0$$ are concurrent, 
    then find the value of 
    $$ 2^{\mathrm{a}^{2}b^{-1}\mathrm{c}^{-1}}2^{b^{2}\mathrm{c}^{-1}\mathrm{a}^{-1}}2^{\mathrm{c}^{2}\mathrm{a}^{-1}b^{-1}}$$
    Solution
    Give, $$ax + by + c = 0$$
    $$bx + cy + a = 0$$
    $$cx + ay + b = 0$$ are concurrent.
    i.e., their determinant is equal to zero.
    $$\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}=0$$

    $$\Rightarrow a(bc-a^2)-b(b^2-ac) + c(ab-c^2)=0$$

    $$\Rightarrow abc - a^3 - b^3 + abc + abc - c^3 = 0$$

    $$\Rightarrow 3abc - (a^3+b^3+c^3)=0$$

    $$\Rightarrow a^3+b^3+c^3 = 3abc$$     ....(1)

    We need to find $$2^{a^2b^{-1}c^{-1}} \cdot 2^{b^2c^{-1}a^{-1}} \cdot 2^{c^2a^{-1}b^{-1}}$$

    $$\Rightarrow 2^{(a^2b^{-1}c^{-1}+b^2c^{-1}a^{-1} + c^2a^{-1}b^{-1})}$$

    $$= \Rightarrow 2^{\left( \dfrac{a^2}{bc} + \dfrac{b^2}{ca} + \dfrac{c^2}{ab}\right)}$$

    $$= 2^{\left(\dfrac{a^3 + b^3+c^3}{abc}\right)}$$

    $$= 2 ^{\left(\dfrac{3abc}{abc}\right)}$$          [From (1)]

    $$=2^3 = 8$$
  • Question 6
    1 / -0
    If the lines $$2\mathrm{x}-\mathrm{a}\mathrm{y}+1 =0$$,$$\ 3\mathrm{x}-\mathrm{b}\mathrm{y}+1 =0$$,$$\ 4\mathrm{x}-\mathrm{c}\mathrm{y}+1 =0$$ are concurrent then $$a,b,c$$ are in ?

    .
    Solution
    $$2x-ay+1 =0,\ 3x-by+1 =0,\ 4x-cy+1 =0$$

    Given lines are concurrent

    $$\Rightarrow \begin{vmatrix} 2 & -a & 1 \\ 3 & -b & 1 \\ 4 & -c & 1 \end{vmatrix}=0$$

    $$\Rightarrow  2b-a-c=0$$

    $$\Rightarrow 2b=a+c$$

    Hence, a,b,c are in A.P.
  • Question 7
    1 / -0
    Value of the determinant $$\begin{vmatrix}x & y &z \\  p& q &r \\  yz& zx & xy\end{vmatrix}$$ is equal to
    Solution
    Let $$ A=\begin{vmatrix}
    x & y & z\\
    p & q & r\\
    yz & zx & xy
    \end{vmatrix}$$
    So, $$A= x(qxy-rzx)-y(pxy-ry z)+z(pxz-qyz)$$
    $$=qx^2y-rx^2z-Pxy^2+ry^2z+pxz^2-qyz^2$$
    $$=x^{p}(z^2-y^2)+qy(x^2-z^2)+rz(-x^2+y^2)$$
  • Question 8
    1 / -0
    lf the lines $$3\mathrm{x}+2\mathrm{y}-5=0,\ 2\mathrm{x}-5\mathrm{y}+3=0,\ 5\mathrm{x}+\mathrm{b}\mathrm{y}+\mathrm{c}=0$$ are concurrent then $$\mathrm{b}+\mathrm{c}=$$
    Solution

    We know that concurrent lines have same intersection points.Then

    $$\therefore 3x+2y-5=0$$ --(1)

    $$2x-5y+3=0$$ ---(2)

    $$5x+by+c=0$$ ---(3)

    From 1 & 2,

    $$6x+4y-10=0$$  

    $$6x-15y+9=0$$ 

     $$\Rightarrow 19y-19=0$$

    $$y=1$$ & $$x=1$$

    So, $$substituting\ \  x=1$$ & $$y=1$$, in equation (3),

    $$5x+by+c=0$$

    $$5+b+c=0$$

    $$\therefore b+c=-5$$

  • Question 9
    1 / -0
    If the points $$A (1, 2), O (0, 0)$$ and $$C (a, b)$$ are collinear, then
    Solution

    $$  {\textbf{Step -1: Find equation}} $$

                    $$  {\text{Since A,O,C are linear they will lie on same line}}{\text{.}} $$

                    $$  {\text{Given points are A}}(1,2),{\text{O}}(0,0)\;{\text{and C}}(a,b) $$

                    $$  {\text{Therefore,}} $$

                    $$  {\text{area }}\Delta {\text{AOC = 0}} $$

                    $$ \therefore \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $$

                    $$  {\text{Here, }}{x_1} = 1,{x_2} = 0\;{\text{and }}{x_3} = a $$

                    $$  {\text{and }}{y_1} = 2,\;{y_2} = 0\;{\text{and }}{y_3} = b $$

    $$  {\textbf{Step -2: Find the relation}} $$

                    $$  \dfrac{1}{2}\left[ {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right] = 0 $$

                    $$   \Rightarrow \dfrac{1}{2}\left[ {1\left( {0 - b} \right) + 0\left( {b - 2} \right) + {\text{a}}\left( {2 - 0} \right)} \right] = 0 $$

                    $$   \Rightarrow  - {\text{b + 2a}} = 0 $$

                    $$   \Rightarrow {\text{2a = b}} $$

    $$  {\textbf{Hence, the correct answer is option C}}{\text{.}} $$

     

     

  • Question 10
    1 / -0
    Relation between $$x$$ and $$y$$, if the points $$(x, y), (1, 2)$$ and $$(7, 0)$$ are collinear is _____
    Solution

    For the points $$AB =(x, y), BC =(1,2)$$ and $$ CD=(7,0)$$ to be collinear they must have area $$=0$$.

    Thus, area of a triangle ABC = $$ \frac { 1 }{ 2 } \left( x_{ 1 }\left( y_{ 2 }-y_{ 3 }

    \right) +x_{ 2 }\left( y_{ 3 }-y_{ 1 } \right) +x_{ 3 }\left( y_{ 1 }-y_{ 2 }

    \right)  \right)= 0 $$

    $$=\dfrac{1}{2}(2x\times 2+6y-14)=0$$

    $$=(2x+6y-14)=0$$

    Thus, we have the relation $$x+3y=7$$ for the points to be collinear.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now