Self Studies

Determinants Test - 32

Result Self Studies

Determinants Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the determinant $$\displaystyle \left | \begin{matrix}
    1 &\omega ^{3}  &\omega ^{5} \\
     \omega ^{3}&1  &\omega ^{4} \\
     \omega ^{5}&\omega ^{4}  &1
    \end{matrix} \right |$$ , where $$\omega$$ is an imaginary cube root of unity,is
    Solution
    $$\left| \begin{matrix} 1 & \omega ^{ 3 } & \omega ^{ 5 } \\ \omega ^{ 3 } & 1 & \omega ^{ 4 } \\ \omega ^{ 5 } & \omega ^{ 4 } & 1 \end{matrix} \right| =\left| \begin{matrix} 1 & 1 & \omega ^{ 2 } \\ 1 & 1 & \omega  \\ \omega ^{ 2 } & \omega  & 1 \end{matrix} \right| \\ \Rightarrow \omega ^{ 2 }-2\omega +1$$        $$(\because \omega^{3}=1\quad  and\quad 1+\omega+\omega^{2}=0)$$
    $$ \Rightarrow (\omega-1)^2$$

  • Question 2
    1 / -0
    Let $$\displaystyle A=\left [ \begin{matrix}1 &0  &0 \\ 2 &1  &0 \\ 3 &2  &1 \end{matrix} \right ]$$ and $$\displaystyle U_{1}, U_{2}, U_{3}$$ be column
    matrices satisfying $$\displaystyle AU_{1}=\left [ \begin{matrix}1\\ 0\\ 0\end{matrix} \right ], AU_{2}=\left [ \begin{matrix}2\\ 3\\ 0\end{matrix} \right ], AU_{3}=\left [ \begin{matrix}2\\ 3\\ 1\end{matrix} \right ]$$. If U is
    $$\displaystyle 3\times 3$$ matrix whose columns are  $$\displaystyle U_{1}, U_{2}, U_{3}$$, then $$\displaystyle \left | U \right |=$$
    Solution
    $$A=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
    Let $$U_1=\begin{bmatrix} a_{ 1 } \\ b_{ 1 } \\ c_{ 1 } \end{bmatrix}$$,$$U_2=\begin{bmatrix} a_{ 2 } \\ b_{ 2 } \\ c_{ 2 } \end{bmatrix}$$ and $$U_3=\begin{bmatrix} a_{ 3 } \\ b_{ 3 } \\ c_{ 3 } \end{bmatrix}$$
    Given $$AU_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
    $$\Rightarrow a_1=1; 2a_1+b_1=0; 3a_1+2b_1+c_1=0$$
    simplifying gives $$a_1=1; b_1=-2; c_1=1$$
    $$AU_2=\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
    $$\Rightarrow a_2=2; 2a_2+b_2=3; 3a_2+2b_2+c_2=0$$
    simplifying gives $$a_2=2; b_2=-1; c_2=-4$$
    $$AU_3=\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
    $$\Rightarrow a_3=2; 2a_3+b_3=3; 3a_3+2b_3+c_3=1$$
    simplifying gives $$a_3=2; b_3=-1; c_3=-3$$
    $$\therefore U=\begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix}$$
    $$|U|=\begin{vmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{vmatrix}=3$$
    Hence, option A.

  • Question 3
    1 / -0
    If the lines $$L_{1}:\lambda ^{2}x-y-1=0$$ $$L_{2}:x-\lambda ^{2}y+1=0$$ $$L_{3}:x+y-\lambda ^{2}=0$$ pass through the same point the value(s) of $$\lambda$$ equals
    Solution
    The given equations passes through same point.So, they are concurrent lines

    $$\Rightarrow \left| \begin{matrix} { \lambda  }^{ 2 } & -1 & -1 \\ 1 & -{ \lambda  }^{ 2 } & 1 \\ 1 & 1 & -{ \lambda  }^{ 2 } \end{matrix} \right| =0$$

    $$\Rightarrow { \lambda  }^{ 6 }-3{ \lambda  }^{ 2 }-2=0$$
    By doing synthetic division we get,
    $$(\lambda^4-2\lambda^2+1)(\lambda^2-2)=0$$
    $$(\lambda^2-1)^2(\lambda^2-2)=0$$
    $$\lambda=\pm \sqrt 2 or \lambda=\pm1$$
    But here $$\lambda=\pm1\  does\  not\  satisfies\  ,hence\  \lambda=\sqrt2$$
    Option B satisfies above equation

  • Question 4
    1 / -0
    If A is a square matrix such that  $$\displaystyle \left | \begin{matrix}4 &0  &0 \\0 &4  &0 \\0 &0  &4\end{matrix} \right |$$=
    Solution
    We know that the determinant of a matrix $$A=\left[ \begin{matrix} a & b & c \\ d & e & f \\ g & h & i \end{matrix} \right] $$ is:

    $$\left| { A } \right| =a(ei-fh)-b(di-fg)+c(dh-eg)$$

    Here, the given matrix is $$A=\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right]$$, so, let us find the determinant of matrix $$A$$ as shown below:

    $$\left| { A } \right| =4[(4\times 4)-(0\times 0)]-0[(0\times 4)-(0\times 0)]+0[(0\times 0)-(0\times 4)]=4(16-0)-0(0-0)+0(0-0)$$
    $$=4\times 16=64$$

    Hence, the determinant of the matrix $$\left[ \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right]$$ is $$64$$.
  • Question 5
    1 / -0
    If $$\displaystyle \omega$$ is an imaginary cube root of unity,then the value of
    $$\left | \begin{matrix}
    a  &b\omega ^{2}  & a\omega \\
     b\omega & c &b\omega ^{2} \\
     c\omega ^{2}&a\omega   &c
    \end{matrix} \right |$$,is ?
    Solution
    $$\triangle =\begin{vmatrix} a & b{ \omega  }^{ 2 } & a\omega  \\ b\omega  & c & b{ \omega  }^{ 2 } \\ c{ \omega  }^{ 2 } & a{ \omega  } & c \end{vmatrix}\quad \quad 1+\omega +{ \omega  }^{ 2 }=0;{ \omega  }^{ 3 }=1;{ \omega  }^{ 4 }=\omega $$

    $$\Rightarrow a\left( { c }^{ 2 }-ab{ \omega  }^{ 3 } \right) -b{ \omega  }^{ 2 }\left( bc{ \omega  }-bc\omega^4 \right) +a\omega \left( ab{ \omega  }^{ 2 }-{ c }^{ 2 }{ \omega  }^{ 2 } \right) $$

    $$\Rightarrow a\left( { c }^{ 2 }-ab{ \omega  }^{ 3 } \right) -b{ \omega  }^{ 2 }\left( bc{ \omega  }-bc\omega \right) +a\left( ab-{ c }^{ 2 } \right) $$

    $$=a\left( { c }^{ 2 }-ab \right) -a\left( c^2-ab \right) =0$$
    $$\therefore \triangle =0$$
    Option C
  • Question 6
    1 / -0
    If $$\displaystyle a\neq b\neq c,$$ are value of x which satisfies the equation $$\displaystyle \left | \begin{matrix}0 &x-a  &x-b \\ x+a &0  &x-c \\ x+b &x+c  &0 \end{matrix} \right |=0$$ is given by
    Solution
    $$\displaystyle \left | \begin{matrix}0 &x-a  &x-b \\ x+a &0  &x-c \\ x+b &x+c  &0 \end{matrix} \right |=0$$

    $$\Rightarrow (x-a)(x+b)(x-c)+(x-b)(x+a)(x+c)=0$$

    We can now check by options 
    $$for \,\,option\,\, A, $$ put $$x=0$$ in above equation we get,

    $$\Rightarrow (0-a)(0+b)(0-c)+(0-b)(0+a)(0+c)=0$$

    $$\Rightarrow abc-abc=0$$

    So, $$x=0$$ satisfies the equation.
  • Question 7
    1 / -0

    If $$A\displaystyle= \left | \begin{matrix}a &b  &c \\ x &y  &z \\ p &q  &r \end{matrix} \right |$$ and $$B=\left | \begin{matrix}q &-b  &y \\  -p&a  &-x \\  r&-c  &z \end{matrix} \right |$$, then 
    Solution
    $$B=\begin{vmatrix}q &-b  &y \\  -p&a  &-x \\  r&-c  &z \end{vmatrix}$$

    $$=-\begin{vmatrix}q &b  &y \\  -p&-a  &-x \\  r&c  &z \end{vmatrix}$$$$=\begin{vmatrix}q &b  &y \\  p&a  &x \\  r&c  &z \end{vmatrix}$$

    $$=-\begin{vmatrix}p &a  &x \\  q&b  &y \\  r&c  &z \end{vmatrix}$$$$=-\begin{vmatrix}a &x  &p \\  b&y  &q \\  c&z  &r \end{vmatrix}$$
     
    $$=-\begin{vmatrix}a &b  &c \\ x &y  &z \\ p &q  &r \end{vmatrix}=-A$$      ($$\because  |A|=|A^{T}|$$)

    Hence, option C.
  • Question 8
    1 / -0
    Number of values of $$a$$ for which the lines $$2x+y-1=0, ax+3y-3=0, 3x+2y-2=0$$ are concurrent is

    Solution
    Here coefficient matrix,  $$\Delta = \begin{vmatrix} 2 & 1 & -1 \\ a & 3 & -3 \\ 3 & 2 & -2 \end{vmatrix}$$
    Using $$C_2 \to C_2+C_3$$
    $$\Delta = \begin{vmatrix} 2 & 0 & -1 \\ a & 0 & 3 \\ 3 & 0 & -2 \end{vmatrix}=0$$
    Clearly $$\Delta=0$$, Hence given lines are concurrent for all values of $$a$$

  • Question 9
    1 / -0
    The value of $$\displaystyle \left | \begin{matrix}
    11 & 12 &13 \\
     12&13  &14 \\
     13&14  &15
    \end{matrix} \right |$$,is
    Solution
    $$\left| \begin{matrix} 11 & 12 & 13 \\ 12 & 13 & 14 \\ 13 & 14 & 15 \end{matrix} \right| $$
    $${ R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 1 },{ R }_{ 3 }\rightarrow { R }_{ 3 }-{ R }_{ 1 }$$
    $$=\left| \begin{matrix} 11 & 12 & 13 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{matrix} \right| $$
    $$=2\left| \begin{matrix} 11 & 12 & 13 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right| $$
    $$=0$$
  • Question 10
    1 / -0
    Let $$\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E$$. Then the value of $$5A+4B+3C+2D+E$$ is equal to
    Solution
    $$\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}=A{ x }^{ 4 }+B{ x }^{ 3 }+C{ x }^{ 2 }+Dx+E$$

    Consider $$LHS=\begin{vmatrix} x & 2 & x \\ { x }^{ 2 } & x & 6 \\ x & x & 6 \end{vmatrix}$$

    $$=x(6x-6x)-2(6x^2-6x)+x(x^3-x^2)$$

    $$={ x }^{ 4 }-{ x }^{ 3 }-12{ x }^{ 2 }+12x$$

    Comparing with RHS, we get 
    $$A=1,B=-1, C=-12, D=12, E=0$$

    So, $$5A+4B+3C+2D+E=-11$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now