Let $$D=\begin{vmatrix} \lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda \end{vmatrix}$$
determinant of cofactors is
$$D^{c}=\begin{vmatrix} { a }^{ 2 }+{ \lambda }^{ 2 } & ab+c\lambda & ca-b\lambda \\ ab-c\lambda & { b }^{ 2 }+{ \lambda }^{ 2 } & bc+a\lambda \\ ca+b\lambda & bc-a\lambda & { c }^{ 2 }+{ \lambda }^{ 2 } \end{vmatrix}=D^2$$
$$\begin{vmatrix} { a }^{ 2 }+{ \lambda }^{ 2 } & ab+c\lambda & ca-b\lambda \\ ab-c\lambda & { b }^{ 2 }+{ \lambda }^{ 2 } & bc+a\lambda \\ ca+b\lambda & bc-a\lambda & { c }^{ 2 }+{ \lambda }^{ 2 } \end{vmatrix}\begin{vmatrix} \lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda \end{vmatrix}={ \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) }^{ 3 }$$
$$\Rightarrow D^3= { \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) }^{ 3 }$$ -------(1)
Now,
$$D=\begin{vmatrix} \lambda & c & -b \\ -c & \lambda & a \\ b & -a & \lambda \end{vmatrix}$$
$$=\lambda(\lambda^2+a^2)-c(-\lambda c-ab)-b(ac-b\lambda)$$
$$=\lambda(\lambda^2+a^2+b^2+c^2)$$
from (1)
$$\left(\lambda(\lambda^2+a^2+b^2+c^2)\right)^3={ \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) }^{ 3 }$$
comparing on both sides gives
$$\lambda^3=1$$ and $$\lambda^2=1$$
$$\therefore \lambda=1$$
Hence, option C.