Self Studies

Determinants Test - 33

Result Self Studies

Determinants Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    When the determinant $$\begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix}$$ is expanded in powers of $$\sin { x }$$, then the constant term in that expression is
    Solution
    $$\begin{vmatrix} \cos { 2x }  & \sin ^{ 2 }{ x }  & \cos { 4x }  \\ \sin ^{ 2 }{ x }  & \cos { 2x }  & \cos ^{ 2 }{ x }  \\ \cos { 4x }  & \cos ^{ 2 }{ x }  & \cos { 2x }  \end{vmatrix}={ a }_{ 0 }+{ a }_{ 1 }\sin { x } +{ a }_{ 2 }\sin ^{ 2 }{ x } +.....$$

    Put $$x=0$$

    $$\Rightarrow \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}={ a }_{ 0 }$$

    $$\Rightarrow a_{0}=-1$$
  • Question 2
    1 / -0
    In triangle $$ABC$$, if $$\begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 }  }  & \cot { \cfrac { B }{ 2 }  }  & \cot { \cfrac { C }{ 2 }  }  \\ \tan { \cfrac { B }{ 2 }  } +\tan { \cfrac { C }{ 2 }  }  & \tan { \cfrac { C }{ 2 }  } +\tan { \cfrac { A }{ 2 }  }  & \tan { \cfrac { A }{ 2 }  } +\tan { \cfrac { B }{ 2 }  }  \end{vmatrix}=0$$, then the triangle must be

    Solution
    $$\begin{vmatrix} 1 & 1 & 1 \\ \cot { \cfrac { A }{ 2 }  }  & \cot { \cfrac { B }{ 2 }  }  & \cot { \cfrac { C }{ 2 }  }  \\ \tan { \cfrac { B }{ 2 }  } +\tan { \cfrac { C }{ 2 }  }  & \tan { \cfrac { C }{ 2 }  } +\tan { \cfrac { A }{ 2 }  }  & \tan { \cfrac { A }{ 2 }  } +\tan { \cfrac { B }{ 2 }  }  \end{vmatrix}=0$$

    $$\Rightarrow \tan { \cfrac { A }{ 2 }  } \cot { \cfrac { B }{ 2 }  } -\tan { \cfrac { A }{ 2 }  } \cot { \cfrac { C }{ 2 }  } +\tan { \cfrac { B }{ 2 }  } \cot { \cfrac { C }{ 2 }  } -\tan { \cfrac { B }{ 2 }  } \cot { \cfrac { A }{ 2 }  } +\tan { \cfrac { C }{ 2 }  } \cot { \cfrac { A }{ 2 }  } -\tan { \cfrac { C }{ 2 }  } \cot { \cfrac { B }{ 2 }  } =0$$

    $$\tan { \cfrac { A }{ 2 }  } (\cot { \cfrac { B }{ 2 }  } -\cot { \cfrac { C }{ 2 }  } )+\tan { \cfrac { B }{ 2 }  } (\cot { \cfrac { C }{ 2 }  } -\cot { \cfrac { A }{ 2 }  } )+\tan { \cfrac { C }{ 2 }  } (\cot { \cfrac { A }{ 2 }  } -\cot { \cfrac { B }{ 2 }  } )=0$$

    $$(\cot { \cfrac { B }{ 2 }  } -\cot { \cfrac { C }{ 2 }  } )=0 , (\cot { \cfrac { C }{ 2 }  } -\cot { \cfrac { A }{ 2 }  } )=0, (\cot { \cfrac { A }{ 2 }  } -\cot { \cfrac { B }{ 2 }  } )=0$$

    $$\Rightarrow A=B=C$$
  • Question 3
    1 / -0
    The value of the determinant $$\begin{vmatrix} 1 & 1 & 1 \\ { _{  }^{ m }{ C } }_{ 1 } & { _{  }^{ m+1 }{ C } }_{ 1 } & { _{  }^{ m+2 }{ C } }_{ 1 } \\ { _{  }^{ m }{ C } }_{ 2 } & { _{  }^{ m+1 }{ C } }_{ 2 } & { _{  }^{ m+2 }{ C } }_{ 2 } \end{vmatrix}$$ is equal to
    Solution
    $$\begin{vmatrix} 1 & 1 & 1 \\ { ^{ m }{ C } }_{ 1 } & { ^{ m+1 }{ C } }_{ 1 } & { ^{ m+2 }{ C } }_{ 1 } \\ { ^{ m }{ C } }_{ 2 } & { ^{ m+1 }{ C } }_{ 2 } & { ^{ m+2 }{ C } }_{ 2 } \end{vmatrix}$$

    $$=\begin{vmatrix} 1 & 1 & 1 \\ m & m+1 & m+2 \\ \dfrac { m(m-1) }{ 2 }  & \dfrac { m(m+1) }{ 2 }  & \dfrac { (m+2)(m+1) }{ 2 }  \end{vmatrix}$$

    $${ C }_{ 1 }\rightarrow { C }_{ 1 }-{ C }_{ 2 },{ C }_{ 2 }\rightarrow { C }_{ 2 }-{ C }_{ 3 }\quad $$

    $$\begin{vmatrix} 0 & 0 & 1 \\ -1 & -1 & m+2 \\ -m & -(m+1) & \dfrac { (m+2)(m+1) }{ 2 }  \end{vmatrix}$$

    $$ 1(-1(-(m+1))-(-1)(-m))$$

    $$=1$$
  • Question 4
    1 / -0
    If $$p+q+r=0=a+b+c$$, then the value of the determinant $$\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}$$ is

    Solution
    Given , $$p+q+r=0=a+b+c$$

    $$\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}$$

    $$=pa(qr{ a }^{ 2 }-{ p }^{ 2 }bc)-qb({ q }^{ 2 }ac-pr{ b }^{ 2 })+rc(pq{ c }^{ 2 }-{ r }^{ 2 }ab)$$

    $$=pqr{ a }^{ 3 }-{ p }^{ 3 }abc-{ q }^{ 3 }abc+pqr{ b }^{ 3 }+pqr{ c }^{ 3 }-{ r }^{ 3 }abc$$

    $$=pqr({ a }^{ 3 }+{ b }^{ 3 }+{ c }^{ 3 })-abc({ p }^{ 3 }+{ q }^{ 3 }+{ r }^{ 3 })$$

    $$=pqr[{ (a+b+c) }^{ 3 }+3abc(a+b+c)]-abc[{ (p+q+r) }^{ 3 }+3pqr(p+q+r)] $$

    $$=0$$
  • Question 5
    1 / -0
    The value of $$\sum _{ r=2 }^{ n }{ { \left( -2 \right)  }^{ r } } \begin{vmatrix} { _{  }^{ n-2 }{ C } }_{ r-2 } & { _{  }^{ n-2 }{ C } }_{ r-1 } & { _{  }^{ n-2 }{ C } }_{ r } \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix}(n>2)$$
    Solution
    $$\Delta=\sum _{ r=2 }^{ n }{ { \left( -2 \right)  }^{ r } } \begin{vmatrix} { ^{ n-2 }{ C } }_{ r-2 } & { ^{ n-2 }{ C } }_{ r-1 } & { ^{ n-2 }{ C } }_{ r } \\ -3 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix}$$

    On expanding , we get
    $$=\sum_{r=2}^n (-2)^r [^{ n-2 }{ C  }_{ r-2 }+2^{ n-2 }{ C  }_{ r-1 }+ ^{ n-2 }{ C }_{ r }]$$
    $$=\sum_{r=2}^n (-2)^r [^{ n-2 }{ C }_{ r-2 }+^{ n-2 }{ C  }_{ r-1 }+ ^{ n-2 }{ C  }_{ r-1 }+^{ n-2 }{ C  }_{ r }]$$
    $$= \sum_{r=2}^n(-2)^r[^{ n-1 }{ C  }_{ r-1 }+^{ n-1 }{ C  }_{ r }]$$
    $$=\sum_{r=2}^n (-2)^r [^nC_r]$$
    $$\Delta =(-2)^{ 2 }\quad ^{ n }C_{ 2 }+(-2)^{ 3 }\quad ^{ n }C_{ 3 }+......+(-2)^{ n }\quad ^{ n }C_{ n }$$  .....(2)

    Now, we will expand $$(1-2)^n$$
    $$(1-2)^n=^nC_0+^nC_1(-2)+^nC_2(-2)^4+^nC_3(-2)^3+.....^nC_n(-2)^n$$
    $$\Rightarrow (-1)^n-1+2n=^nC_2(-2)^4+^nC_3(-2)^3+.....^nC_n(-2)^n$$
    Using this in (1), we get
    $$\Delta=2n-1+(-1)^n$$

  • Question 6
    1 / -0
    If $$a,b,c$$ are different, then the value of $$x$$ satisfying $$\begin{vmatrix} 0 & { x }^{ 2 }-a & { x }^{ 3 }-b \\ { x }^{ 2 }+a & 0 & { x }^{ 2 }+c \\ { x }^{ 4 }+b & x-c & 0 \end{vmatrix}=0$$ is
  • Question 7
    1 / -0
    If $${ A }_{ 1 },{ B }_{ 1 },{ C }_{ 1 },..$$ are, respectively, the cofactors of the elements $${ a }_{ 1 },{ b }_{ 1 },{ c }_{ 1 },..$$ of the determinant $$\quad \Delta =\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{vmatrix}$$, $$\Delta\neq 0$$, then the value of $$\begin{vmatrix} { B }_{ 2 } & { C }_{ 2 } \\ { B }_{ 3 } & { C }_{ 3 } \end{vmatrix}$$ is equal to
    Solution
    $$\quad \Delta =\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{vmatrix}$$

    $$\Rightarrow \Delta={ a }_{ 1 }({ b }_{ 2 }{ c }_{ 3 }-{ b }_{ 3 }{ c }_{ 2 })+{ b }_{ 1 }({ a }_{ 3 }{ c }_{ 2 }-{ a }_{ 2 }{ c }_{ 3 })+{ c }_{ 1 }({ a }_{ 2 }{ b }_{ 3 }-{ a }_{ 3 }{ b }_{ 2 })$$

    We have to find $$\begin{vmatrix} { B }_{ 2 } & { C }_{ 2 } \\ { B }_{ 3 } & { C }_{ 3 } \end{vmatrix}$$

    Here, $$B_{2}$$ is cofactor of element $$b_{2}$$
    So, $$B_{2}=\begin{vmatrix} { a }_{ 1 } & { c }_{ 1 } \\ { a }_{ 3 } & { c }_{ 3 } \end{vmatrix}$$
    $$\Rightarrow B_{2}=a_{1}c_{3}-a_{3}c_{1}$$

    $$C_{2}$$ is cofactor of element $$c_{2}$$
    So, $$C_{2}=-\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } \\ { a }_{ 3 } & { b }_{ 3 } \end{vmatrix}$$
    $$\Rightarrow C_{2}=a_{3}b_{1}-a_{1}b_{3}$$

    $$B_{3}$$ is cofactor of element $$b_{3}$$
    So, $$B_{3}=-\begin{vmatrix} { a }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { c }_{ 2 } \end{vmatrix}$$
    $$\Rightarrow B_{3}=a_{2}c_{1}-a_{1}c_{2}$$

     $$C_{3}$$ is cofactor of element $$c_{3}$$
    So, $$C_{3}=\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } \end{vmatrix}$$
    $$\Rightarrow C_{3}=a_{1}b_{2}-a_{2}b_{1}$$

    Now,  $$\begin{vmatrix} { B }_{ 2 } & { C }_{ 2 } \\ { B }_{ 3 } & { C }_{ 3 } \end{vmatrix}$$

    $$=\begin{vmatrix} a_{ 1 }c_{ 3 }-a_{ 3 }c_{ 1 } & a_{ 3 }b_{ 1 }-a_{ 1 }b_{ 3 } \\ a_{ 2 }c_{ 1 }-a_{ 1 }c_{ 2 } & a_{ 1 }b_{ 2 }-a_{ 2 }b_{ 1 } \end{vmatrix}$$

    $$={ a_{ 1 } }^{ 2 }{ b }_{ 2 }{ c }_{ 3 }-{ a }_{ 1 }{ a }_{ 2 }{ b }_{ 1 }{ c }_{ 3 }-{ a }_{ 1 }{ a }_{ 3 }{ b }_{ 2 }{ c }_{ 1 }-{ a_{ 1 } }^{ 2 }{ b }_{ 3 }{ c }_{ 2 }+{ a }_{ 1 }{ a }_{ 2 }{ b }_{ 3 }{ c }_{ 1 }+{ a }_{ 1 }{ a }_{ 3 }{ b }_{ 1 }{ c }_{ 2 }$$

    $$={ a }_{ 1 }[{ a }_{ 1 }({ b }_{ 2 }{ c }_{ 3 }-{ b }_{ 3 }{ c }_{ 2 })+{ b }_{ 1 }({ a }_{ 3 }{ c }_{ 2 }-{ a }_{ 2 }{ c }_{ 3 })+{ c }_{ 1 }({ a }_{ 2 }{ b }_{ 3 }-{ a }_{ 3 }{ b }_{ 2 })]$$

    $$=a_{1}\Delta$$
  • Question 8
    1 / -0
    If $$a>0$$ and discriminant of $$a{ x }^{ 2 }+2bx+c$$ is negative, then $$\Delta =\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & 0 \end{vmatrix}$$ is
    Solution
    Discriminant of $$a{ x }^{ 2 }+bx+c=0$$ is $$4{ b }^{ 2 }-4ac<0\Rightarrow { b }^{ 2 }-ac<0$$
    Then

    $$\Delta =\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ ax+b & bx+c & 0 \end{vmatrix}$$

    Applying $$R_{ 3 }\rightarrow R_{ 3 }-xR_{ 1 }-R_{ 2 }$$

    $$\Delta =\begin{vmatrix} a & b & ax+b \\ b & c & bx+c \\ 0 & 0 & -\left( ax^{ 2 }+2bx+c \right)  \end{vmatrix}$$

    Expanding along $$R_{ 3 }$$, we get

    $$\Delta =\left( b^{ 2 }-ac \right) \left( ax^{ 2 }+2bx+c \right) $$

    $$\Rightarrow \Delta <0$$

    Hence, option 'C' is correct.
  • Question 9
    1 / -0
    If $$\begin{vmatrix} { a }^{ 2 }+{ \lambda  }^{ 2 } & ab+c\lambda  & ca-b\lambda  \\ ab-c\lambda  & { b }^{ 2 }+{ \lambda  }^{ 2 } & bc+a\lambda  \\ ca+b\lambda  & bc-a\lambda  & { c }^{ 2 }+{ \lambda  }^{ 2 } \end{vmatrix}\begin{vmatrix} \lambda  & c & -b \\ -c & \lambda  & a \\ b & -a & \lambda  \end{vmatrix}={ \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }^{ 3 }$$, then the value of $$\lambda$$ is
    Solution
    Let $$D=\begin{vmatrix} \lambda  & c & -b \\ -c & \lambda  & a \\ b & -a & \lambda  \end{vmatrix}$$

    determinant of cofactors is

    $$D^{c}=\begin{vmatrix} { a }^{ 2 }+{ \lambda  }^{ 2 } & ab+c\lambda  & ca-b\lambda  \\ ab-c\lambda  & { b }^{ 2 }+{ \lambda  }^{ 2 } & bc+a\lambda  \\ ca+b\lambda  & bc-a\lambda  & { c }^{ 2 }+{ \lambda  }^{ 2 } \end{vmatrix}=D^2$$

    $$\begin{vmatrix} { a }^{ 2 }+{ \lambda  }^{ 2 } & ab+c\lambda  & ca-b\lambda  \\ ab-c\lambda  & { b }^{ 2 }+{ \lambda  }^{ 2 } & bc+a\lambda  \\ ca+b\lambda  & bc-a\lambda  & { c }^{ 2 }+{ \lambda  }^{ 2 } \end{vmatrix}\begin{vmatrix} \lambda  & c & -b \\ -c & \lambda  & a \\ b & -a & \lambda  \end{vmatrix}={ \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }^{ 3 }$$

    $$\Rightarrow D^3= { \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }^{ 3 }$$ -------(1)
    Now,
    $$D=\begin{vmatrix} \lambda  & c & -b \\ -c & \lambda  & a \\ b & -a & \lambda  \end{vmatrix}$$

     $$=\lambda(\lambda^2+a^2)-c(-\lambda c-ab)-b(ac-b\lambda)$$
     $$=\lambda(\lambda^2+a^2+b^2+c^2)$$
    from (1)
    $$\left(\lambda(\lambda^2+a^2+b^2+c^2)\right)^3={ \left( 1+{ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }^{ 3 }$$
    comparing on both sides gives
    $$\lambda^3=1$$ and $$\lambda^2=1$$
    $$\therefore \lambda=1$$
    Hence, option C.

  • Question 10
    1 / -0
    If $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}=x+iy$$, then
    Solution
    Given, $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}=x+iy$$

    Now, $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$$

    $$=6i(-3+3)+3i(4i+20)+1(12-60i)$$

    $$=0+0i$$

    Comparing with RHS, we get $$x=0,y=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now