Here $$M_{11} = \begin{vmatrix}2 & -5 \\ -1 & 3\end{vmatrix}$$ (Delete 1st row and first column)
$$= 6-5$$
$$M_{11} = 1$$
$$\therefore C_{11} = 1$$ $$(\because (-1)^{1 + 1} = 1)$$
$$M_2 = \begin{vmatrix}7 & -5\\ 8 & 3 \end{vmatrix}$$ (Delete 1st row and 2nd column)
$$= 21 - (-40)$$
$$M_2 = 61$$
$$\therefore C_{12} = - 61$$, $$(\because (-1)^{1+2} = - 1)$$
$$M_{13} = \begin{vmatrix}7 & 2 \\ 8 & -1\end{vmatrix}$$ (Delete 1st row and 3rd column)
$$= - 7 - 16$$
$$M_{13} = - 23$$
$$\therefore C_{13} = - 23, (\because (-1)^{1 + 3} = 1)$$
$$M_{21} = \begin{vmatrix}3 & 4 \\ -1 & 3\end{vmatrix}$$ (Delete 2nd row and 1st column)
$$= 9 - (-4)$$
$$M_{21} = 13$$
$$\therefore C_{21} = - 13, (\because (-1)^{2 + 1} = - 1)$$
$$M_{22} = \begin{vmatrix}2 & 4 \\ 8 & 3\end{vmatrix}$$ (Delete 2nd row and 2nd column)
$$= 6 - 32$$
$$M_{22} = - 26$$
$$\therefore C_{22} = - 26, (\because (-1)^{2 + 2} = 1)$$
$$M_{23} = \begin{vmatrix}2 & 3 \\ 8 & -1\end{vmatrix}$$ (Delete 2nd row and 3rd column)
$$= -2 - 24$$
$$M_{23} = - 26$$
$$\therefore C_{23} = 26, (\because (-1)^{2 + 3} = - 1)$$
$$M_{31} = \begin{vmatrix}3 & 4 \\ 2 & -5\end{vmatrix}$$ (Delete 3rd row and 1st column)
$$= -15 -8$$
$$M_{31} = - 23$$
$$\therefore C_{31} = - 23, (\because (-1)^{3 + 1} = 1)$$
$$M_{32} = \begin{vmatrix}2 & 4 \\ 7 & -5\end{vmatrix}$$ (Delete 3rd row and 2nd column)
$$= -10 - 28$$
$$M_{32} = - 38$$
$$\therefore C_{32} = 38, (\because (-1)^{3 + 2} = - 1)$$
$$M_{33} = \begin{vmatrix}2 & 3 \\ 7 & 2\end{vmatrix}$$ (Delete 3rd row and 3rd column)
$$= 4 - 21$$
$$M_{33} = - 17$$
$$\therefore C_{33} = - 17, (\because (-1)^{3 + 3} = 1)$$
Hence Determinants of Minors and Cofactors are
$$\begin{vmatrix}1
& 61 & -23\\ 13 & -26 & -26\\ -23 & -38 &
-17\end{vmatrix}$$ and $$\begin{vmatrix}1 & -61 & -23\\ -13
& -26 & 26\\ -23 & 38 & -17\end{vmatrix}$$