Self Studies

Determinants Test - 34

Result Self Studies

Determinants Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the determinants of minors and cofactors of the determinant $$\begin{vmatrix}2 & 3 & 4\\ 7 & 2 & -5\\ 8 & -1 & 3\end{vmatrix}$$
    Solution
    Here $$M_{11} = \begin{vmatrix}2 & -5 \\ -1 & 3\end{vmatrix}$$ (Delete 1st row and first column)
                       $$= 6-5$$
    $$M_{11} = 1$$
    $$\therefore C_{11} = 1$$                $$(\because (-1)^{1 + 1} = 1)$$
                              $$M_2 = \begin{vmatrix}7 & -5\\ 8 & 3 \end{vmatrix}$$ (Delete 1st row and 2nd column)
                                      $$= 21 - (-40)$$
    $$M_2 = 61$$
    $$\therefore C_{12} = - 61$$,              $$(\because (-1)^{1+2} = - 1)$$
                             $$M_{13} = \begin{vmatrix}7 & 2 \\ 8 & -1\end{vmatrix}$$  (Delete 1st row and 3rd column)
                                     $$= - 7 - 16$$
    $$M_{13} = - 23$$
    $$\therefore C_{13} = - 23,            (\because (-1)^{1 + 3} = 1)$$
                           $$M_{21} = \begin{vmatrix}3 & 4 \\ -1 & 3\end{vmatrix}$$  (Delete 2nd row and 1st column)
                                     $$= 9  - (-4)$$
    $$M_{21} = 13$$
    $$\therefore C_{21} = - 13,              (\because (-1)^{2 + 1} = - 1)$$
                           $$M_{22} = \begin{vmatrix}2 & 4 \\ 8 & 3\end{vmatrix}$$  (Delete 2nd row and 2nd column)
                                     $$= 6  - 32$$
    $$M_{22} = - 26$$
    $$\therefore C_{22} = - 26,              (\because (-1)^{2 + 2} = 1)$$
                           $$M_{23} = \begin{vmatrix}2 & 3 \\ 8 & -1\end{vmatrix}$$  (Delete 2nd row and 3rd column)
                                     $$= -2 - 24$$
    $$M_{23} = - 26$$
    $$\therefore C_{23} = 26,              (\because (-1)^{2 + 3} = - 1)$$
                           $$M_{31} = \begin{vmatrix}3 & 4 \\ 2 & -5\end{vmatrix}$$  (Delete 3rd row and 1st column)
                                     $$= -15 -8$$
    $$M_{31} = - 23$$
    $$\therefore C_{31} = - 23,              (\because (-1)^{3 + 1} =  1)$$
                           $$M_{32} = \begin{vmatrix}2 & 4 \\ 7 & -5\end{vmatrix}$$  (Delete 3rd row and 2nd column)
                                     $$= -10 - 28$$
    $$M_{32} = - 38$$
    $$\therefore C_{32} = 38,              (\because (-1)^{3 + 2} = - 1)$$
                           $$M_{33} = \begin{vmatrix}2 & 3 \\ 7 & 2\end{vmatrix}$$  (Delete 3rd row and 3rd column)
                                     $$= 4  - 21$$
    $$M_{33} = - 17$$
    $$\therefore C_{33} = - 17,              (\because (-1)^{3 + 3} = 1)$$
    Hence Determinants of Minors and Cofactors are
    $$\begin{vmatrix}1

    & 61 & -23\\ 13 & -26 & -26\\ -23 & -38 &

    -17\end{vmatrix}$$ and $$\begin{vmatrix}1 & -61 & -23\\ -13

    & -26 & 26\\ -23 & 38 & -17\end{vmatrix}$$

  • Question 2
    1 / -0
    Find the adjoint of the matrix $$A = \begin{bmatrix}1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 12\end{bmatrix}$$.
    If $$\mbox{Adjoint A: } \begin{bmatrix}a & -9 & 1 \\ b & 9 & -2 \\ 2 & c & 1\end{bmatrix} \\$$, find the value of $$abc$$.
    Solution

  • Question 3
    1 / -0
    If $$A^2 = I$$, then the value of $$det(A - I)$$ is (where $$A$$ has order $$3$$)
    Solution
    $$A^2=I$$
    $$\Rightarrow A^2-I=O$$
    $$\Rightarrow (A-I)(A+I)=O$$
    $$\Rightarrow |A-I||A+I|=0$$
    $$\therefore$$ Either $$|A-I|=0$$ or $$|A+I|=0$$
    Hence, cannot say anything about $$|A-I|$$.
    Hence, option D.

  • Question 4
    1 / -0
    If $$A=\begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix}$$and $$f(x) = \displaystyle \frac{1 + x}{1- x}$$, then $$f(|A|)$$ is
    Solution
    Here  $$|A| =1\times 1-2\times 2 = -3$$

    $$\therefore f(|A|)=\cfrac{1+(-3)}{1+3}=-\cfrac{1}{2}$$
  • Question 5
    1 / -0
    $$\Delta =\begin{vmatrix} a & { a }^{ 2 } & 0 \\ 1 & 2a+b & (a+b) \\ 0 & 1 & 2a+3b \end{vmatrix}$$ is divisible by
    Solution
    Expanding by $$R_{3}$$,
    $$=-1(a(a+b))+(2a+3b)(2a^{2}+ab-a^{2})$$
    $$=-1(a(a+b))+(2a+3b)a(a+b)$$
    $$=a(a+b)(2a+3b-1)$$
  • Question 6
    1 / -0
    If matrix A is given by $$A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}$$, then the determinant of $$A^{2005} - 6A^{2004}$$ is
    Solution
    Given, $$A = \begin{bmatrix}6 & 11\\ 2 & 4\end{bmatrix}$$
    $$|A|=2$$

    Now, $$|A^{2005}-6A^{2004}|=|A|^{2004}|A-6I|$$
               $$=2^{2004}\begin{vmatrix} 0 & 11 \\ 2 & -2 \end{vmatrix}$$
               $$=2^{2004}(-22)$$
               $$=2^{2005}(-11)$$

  • Question 7
    1 / -0
    $$\displaystyle \left | \begin{matrix}0 &p-q  &p-r \\ q-p &0  &q-r \\ r-p &r-q  &0 \end{matrix} \right |$$ is equal to
    Solution
    $$\left| \begin{matrix} 0 & p-q & p-r \\ q-p & 0 & q-r \\ r-p & r-q & 0 \end{matrix} \right| \\$$

    $$ =0\left( 0-\left( r-q \right) \left( q-r \right)  \right) -\left( p-q \right) \left( 0-\left( r-p \right) \left( q-r \right)  \right) +\left( p-r \right) \left( \left( q-p \right) \left( r-q \right) -0 \right) \\$$

    $$ =\left( p-q \right) \left( r-p \right) \left( q-r \right) +\left( p-r \right) \left( q-p \right) \left( r-q \right) =0$$
  • Question 8
    1 / -0
    If $$\displaystyle \left | \begin{matrix}6i &-3i  &1 \\ 4 &3i  &-1 \\ 20 &3  &i \end{matrix} \right |=x+iy$$ then
    Solution
    $$\Delta =\left| \begin{matrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{matrix} \right| \\$$

    $$ =6i\left( -3+3 \right) +3i\left( 4i+20 \right) +1\left( 12-60i \right) \\$$

    $$ =0-12+60i+12-60i$$

     $$=0\\$$

    $$ \Rightarrow x=0,y=0$$

    Hence, the option 'D' is correct.
  • Question 9
    1 / -0
    The matrix $$\begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$ is
    Solution
    Given $$A=\begin{bmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

    $$|A|=\begin{vmatrix}1 & 0 & 1 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{vmatrix}$$

    $$\Rightarrow |A|=1-1=0$$

    Hence, $$A$$ is singular.
  • Question 10
    1 / -0
    The value of the determinant $$\displaystyle \left | \begin{matrix}^{5}C_{0} &^{5}C_{3}  &14 \\ ^{5}C_{1} &^{5}C_{4}  &1 \\ ^{5}C_{2} &^{5}C_{5}  &1 \end{matrix} \right |$$ is
    Solution
    $$\left| \begin{matrix} ^{ 5 }C_{ 0 } & ^{ 5 }C_{ 3 } & 14 \\ ^{ 5 }C_{ 1 } & ^{ 5 }C_{ 4 } & 1 \\ ^{ 5 }C_{ 2 } & ^{ 5 }C_{ 5 } & 1 \end{matrix} \right| =\left| \begin{matrix} 1 & 10 & 14 \\ 5 & 5 & 1 \\ 10 & 1 & 1 \end{matrix} \right|$$

     $$ =1\left( 5-1 \right) -10\left( 5-10 \right) +14\left( 5-50 \right)$$ 

     $$ =4+50-630=-576$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now