Self Studies

Determinants Test - 35

Result Self Studies

Determinants Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a third order determinant $$a_{ij}$$ denotes the element in the ith row and the jth column If $$ a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1,  & i < j\end{matrix}\right.$$ then the value of the determinant
    Solution
    $$ a_{ij} = \left\{\begin{matrix}0, & i = j\\ 1, & i > j\\ -1,  & i < j\end{matrix}\right.$$
     
    Let $$A=\begin{bmatrix} 0&-1&-1\\1&0&-1\\1&1&0\end{bmatrix}$$

    Now, $$|A|=\begin{vmatrix} 0&-1&-1\\1&0&-1\\1&1&0\end{vmatrix}$$

                  $$=1-1=0$$

    $$\Rightarrow |A|=0$$
  • Question 2
    1 / -0
    If $$z = \begin{vmatrix}3 + 3i & 5 - i & 7 - 3i\\ i & 2i & - 3i\\ 3 - 2i & 5 + i & 7 + 3i\end{vmatrix} $$, then
    Solution
    $$z=$$ $$\begin{vmatrix}
    3+3i & 5-i  & 7-3i\\
     i & 2i & -3i \\
    3-2i & 5+i & 7+3i
    \end{vmatrix}$$

    On finding $$\left | z \right |$$ ie determinant value

    $$=3(1+i)[2i(7+3i)+3i(5+i)]-(5-i)[i(7+3i)+3i(3-2i)]+(7-3i)[i(5+i)-2i(3-2i)]$$

    $$=-3(3i+61)$$

    Hence $$\left | z \right |$$ is complex so option $$(d)$$ is correct
  • Question 3
    1 / -0
    Evaluate $$\begin{vmatrix}cos (x + x^2) & sin(x + x^2) &- cos (x + x^2) \\sin(x - x^2)  & cos (x - x^2) & sin (x - x^2)\\ sin 2x & 0 & sin  2x^2\end{vmatrix}$$
    Solution
    $$\begin{vmatrix}cos (x + x^2) & sin(x + x^2) &- cos (x + x^2) \\sin(x - x^2)  & cos (x - x^2) & sin (x - x^2)\\ sin 2x & 0 & sin  2x^2\end{vmatrix}$$
    expanding along $$R_3$$ gives
    $$=\sin 2x\left(\sin(x+x^2)\sin(x-x^2)+\cos(x+x^2)\cos(x-x^2)\right)$$ $$+\sin 2x^2\left(\cos(x+x^2)\cos(x-x^2)-\sin(x+x^2)\sin(x-x^2)\right)$$
    $$=\sin 2x\cos 2x^2+\sin 2x^2\cos 2x$$
    $$=\sin(2x+2x^2)$$
    Hence, option A.

  • Question 4
    1 / -0
    If $$\displaystyle \left | \begin{matrix}a+x &a  &x \\ a-x &a  &x \\ a-x &a  &-x \end{matrix} \right |=0$$ then $$\displaystyle x$$ is
    Solution

  • Question 5
    1 / -0
    The value of the determinant $$\begin{vmatrix}\sqrt{a} + \sqrt{b} & \sqrt{bc} + \sqrt{2a} & b + \sqrt{ca}\\ 2 \sqrt{c} & c & \sqrt{bc}\\ \sqrt{c} & \sqrt{2c} &c \end{vmatrix}$$ is
    Solution
    $$\begin{vmatrix} \sqrt { a } +\sqrt { b }  & \sqrt { bc } +\sqrt { 2a }  & b+\sqrt { ac }  \\ 2\sqrt { c }  & c & \sqrt { bc }  \\ \sqrt { c }  & \sqrt { 2c }  & c \end{vmatrix}\\ =\left( \sqrt { a } +\sqrt { b }  \right) \left( c\sqrt { 2b } -{ c }^{ 2 } \right) -\left( \sqrt { bc } +\sqrt { 2a }  \right) \left( 2c\sqrt { c } -c\sqrt { b }  \right) +\left( b+\sqrt { ac }  \right) \left( c\sqrt { c } -2c\sqrt { c }  \right) \\ =c\sqrt { 2ab } +bc\sqrt { 2 } -{ c }^{ 2 }\sqrt { a } -{ c }^{ 2 }\sqrt { b } -2{ c }^{ 2 }\sqrt { b } -2a\sqrt { 2ac } +bc\sqrt { c } \\ +c\sqrt { ab } +bc\sqrt { c } +{ c }^{ 2 }\sqrt { a } -2bc\sqrt { c } -2{ c }^{ 2 }\sqrt { a } \\ =c\sqrt { 2 } b-c\sqrt { b } $$
  • Question 6
    1 / -0
    The value of the $$\displaystyle m^{th}$$ order determinant of a matrix $$\displaystyle A$$ is $$\displaystyle 15$$ then the value of determinant formed by the cofactors of $$\displaystyle A$$ will be
    Solution
    If A be the matrix of order m and B is matrix of cofactors of a then determinant of B will be equal to $$\displaystyle \left ( m-1 \right )^{th}$$ power of the determinant of A.
    $$\displaystyle \left | B \right |= \left | A \right |^{m-1}$$
    $$\displaystyle \therefore |B| = \left ( 15 \right )^{m-1}$$
  • Question 7
    1 / -0
    If the determinant $$\begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0$$, if $$a, b, c$$ are in
    Solution
    $$\begin{vmatrix}a & b & at-b\\ b & c & bt-c\\ 2 & 1 & 0\end{vmatrix}=0$$
    Expanding it along third row,
    $$\Rightarrow 2[b(bt-c)-c(at-b)]-1[a(bt-c)-b(at-b)]=0$$
    $$\Rightarrow 2t(b^2-ac)-(b^2-ac)=0$$
    $$\Rightarrow (2t-1)(b^2-ac)=0$$
    $$\Rightarrow t=\dfrac{1}{2}$$ or $$b^2=ac$$
    If $$b^2 =ac$$ then $$a,b,c\in $$ G.P.
  • Question 8
    1 / -0
    The points $$\displaystyle(a, b+c),(b, c+a),(c, a+b)$$ are 
    Solution
    To check for collineauty, we can check the slope of the two points. Suppose the points be A, B and C then 

    $$(slope)_{AB} = \dfrac {(c+a)-(b+c)}{b-a} =-1$$

    $$(slope)_{BC}= \dfrac{(a+b)-(c+a)}{c-b} =-1$$

    $$m_{AB}= m_{BC} =$$ points are collinear 
  • Question 9
    1 / -0
    If $$\begin{vmatrix}x^{2}+3x &x+1  &x-2 \\ x-1 &1-2x  &x+4 \\ x+3 &x-4  &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho  $$
    Then value of $$\varrho$$ equals to,
    Solution
    $$\begin{vmatrix}x^{2}+3x &x+1  &x-2 \\ x-1 &1-2x  &x+4 \\ x+3 &x-4  &3x \end{vmatrix}= Ax^{4}+Bx^{3}+Cx^{2}+Dx+\varrho  $$

    Substitute $$x=0$$

    $$\Rightarrow \begin{vmatrix} 0 & 1 & -2 \\ -1 & 1 & 4 \\ 3 & -4 & 0 \end{vmatrix}=\varrho $$

    $$=12-2=10$$

  • Question 10
    1 / -0
    The value of the determinant $$\displaystyle \begin{vmatrix}1 & e^{i  \pi/3} &e^{i  \pi/4} \\ e^{- i  \pi/3} &1  &e^{2 i \pi / 3} \\ e^{- i \pi/4} & e^{- 2 i  \pi / 3} & 1\end{vmatrix}$$ is ..................
    Solution
    Let   $$\Delta = \begin{vmatrix} 1 & { e }^{ i\pi /3 } & { e }^{ i\pi /4 } \\ { e }^{ -i\pi /3 } & 1 & { e }^{ i2\pi /3 } \\ { e }^{ -i\pi /4 } & { e }^{ -i2\pi /3 } & 1 \end{vmatrix}$$
    Expanding along first column we get,
    $$\displaystyle \Delta = (1)\begin{vmatrix} 1 & { e }^{ i2\pi /3 }  \\ { e }^{ -i2\pi /3 } & 1 \end{vmatrix}-{ e}^{ -i\pi /3 }\begin{vmatrix} { e }^{ i\pi /3 } & { e }^{ i\pi /4 }

    \\ { e }^{ -i2\pi /3 } & 1 \end{vmatrix}+{ e }^{ -i\pi /4 } \begin{vmatrix}   { e }^{ i\pi /3 } & { e }^{ i\pi /4 } \\ 1 & { e }^{ i2\pi /3 } \end{vmatrix}$$
    $$\Rightarrow \Delta = 1(1-1)-{ e }^{ -i\pi /3 }({ e }^{ i\pi /3 }-{ e}^{ -5i\pi /12 })+{ e }^{ -i\pi /4 } ({ e }^{ \pi } -{ e }^{ i\pi /4 } )$$
    $$\Rightarrow \Delta =-2+{ e }^{ 3i\pi /4 }+{ e }^{ -3i\pi /4 }=-2+2\cos { (3\pi /4) }=-2-\sqrt{2} =-(2+\sqrt{2})$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now