Self Studies

Determinants Test - 36

Result Self Studies

Determinants Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\Delta =\begin{vmatrix}
    a & 5-i & 7+i\\
    5+i & b & 3+i\\
    7-i & 3-i & c
    \end{vmatrix}$$, then $$\Delta $$ is always
    Solution
    $$\Delta =\begin{vmatrix} a & 5-i & 7+i \\ 5+i & b & 3+i \\ 7-i & 3-i & c \end{vmatrix}$$

    $$=abc-a(9-i^{ 2 })+(i-5)(5c+ic-(7-i)(3+i))+(7+i)[(5+i)(3-i)-b(7-i)]$$

    $$=abc-10a+5ic-c-25c-5ic-(i-5)(21+4i+1)+(7+i)(16-2i)-50b$$

    $$=abc-10a-26c-2i+114+114+2i-50b$$

    $$\Delta=abc-10a-26c+228-50b$$
    Hence, $$\Delta $$ is real.
  • Question 2
    1 / -0
    If the lines $$\displaystyle y-x=5,3x+4y=1$$ and $$\displaystyle y=mx+3$$ are concurrent then the value of m is
    Solution
    Given lines $$\displaystyle y-x=5,3x+4y=1$$ and $$\displaystyle y=mx+3$$
    For concurrency,
    $$\begin{vmatrix} -1 & 1 & 5 \\ 3 & 4 & 1 \\ -m & 1 & 3 \end{vmatrix}=0$$
    $$\Rightarrow -5+19m=0$$
    $$\Rightarrow \displaystyle m =\frac{5}{19}$$
  • Question 3
    1 / -0
    If $$\Delta =\begin{vmatrix}
    \cos \theta /2 & 1 & 1\\
    1 & \cos \theta /2 & -\cos \theta /2\\
    -\cos \theta /2 & 1 & -1
    \end{vmatrix}$$, If the minimun of $$\Delta $$ is $$m_{1}$$ and maximum of $$\Delta $$ is $$m_{2}$$, then $$\left [ m_{1}, m_{2} \right ]$$ are related
    Solution
    $$\Delta =\begin{vmatrix} \cos  \theta /2 & 1 & 1 \\ 1 & \cos  \theta /2 & -\cos  \theta /2 \\ -\cos  \theta /2 & 1 & -1 \end{vmatrix}$$

    $$=-1(-1-\cos ^{ 2 }{ \theta /2 } )+1(1+\cos ^{ 2 }{ \theta /2 } )$$

    $$=2+2\cos ^{ 2 }{ \theta /2 } $$

    $$=3+\cos\theta$$

    Now, $$\because -1\le \cos\theta \le 1$$
    $$\Rightarrow 2\le 3+\cos\theta \le 4$$
    Hence, $$m_{1}=2,m_{2}=4$$

  • Question 4
    1 / -0
    If $$A=\begin{pmatrix}
    1 & 2 & 1\\
    -1 & 0 & 3\\
    2 & -1 & 1
    \end{pmatrix}$$ then characteristic equation is given by
    Solution
    The characteristic equation of A is given by 

    $$|A-\lambda I|=0$$

    $$\begin{vmatrix} 1-\lambda  & 2 & 1 \\ -1 & -\lambda  & 3 \\ 2 & -1 & 1-\lambda  \end{vmatrix}=0$$

    $$(1-\lambda)[-\lambda(1-\lambda)+3]-2(-1(1-\lambda)-6))+1(1+2\lambda)=0$$

    $$\Rightarrow -\lambda ^{3}+2\lambda ^{2}-4\lambda +18=0$$

  • Question 5
    1 / -0
    Let $$ \displaystyle \begin{vmatrix}x^{2}+x &2x-1  &x+3 \\3x+1  &2+x^{2}  &x^{3} \\x-3  &x^{2}+4  &2x\end{vmatrix} =px^{2}+qx^{6}+rx^{5}+sx^{4}+tx^{3}+ux^{2}+vx+w$$
     then which of the following is not true?
    Solution
    Given, $$\begin{vmatrix} x^{ 2 }+x & 2x-1 & x+3 \\ 3x+1 & 2+x^{ 2 } & x^{ 3 } \\ x-3 & x^{ 2 }+4 & 2x \end{vmatrix}=px^{ 2 }+qx^{ 6 }+rx^{ 5 }+sx^{ 4 }+tx^{ 3 }+ux^{ 2 }+vx+w$$

    $$(x^{ 2 }+x)[2x(2+x^{ 2 })-x^{ 3 }(4+x^{ 2 })]-(2x-1)[2x(3x+1)-x^{ 3 }(x-3)]+(x+3)[(3x+1)(x^{ 2 }+4)-(x-3)(x^{ 2 }+2)]=px^{ 2 }+qx^{ 6 }+rx^{ 5 }+sx^{ 4 }+tx^{ 3 }+ux^{ 2 }+vx+w$$

    $$-x^{ 7 }-x^{ 6 }+0x^{ 5 }+4x^{ 4 }+8x^{ 3 }+34x^{ 2 }+75x+21=px^{ 7 }+qx^{ 6 }+rx^{ 5 }+sx^{ 4 }+tx^{ 3 }+ux^{ 2 }+vx+w$$

    On comparing both sides we get $$p=q=-1w=21,v=75p=-1,t=8,q=0,t=-8$$
  • Question 6
    1 / -0
    If $$A=\begin{bmatrix}
    -1 & -3 & -3\\
    3 & 1 & -3\\
    3 & -3 & 1
    \end{bmatrix}$$ then adj (A) is
    Solution
    Given $$A=\begin{bmatrix} -1 & -3 & -3 \\ 3 & 1 & -3 \\ 3 & -3 & 1 \end{bmatrix}$$

    $$ C=\begin{bmatrix} -8 & -12 & -12 \\ 12 & 8 & -12 \\ 12 & -12 & 8 \end{bmatrix}$$

    $$adj A=C^{T}=\begin{bmatrix} -8 & 12 & 12 \\ -12 & 8 & -12 \\ -12 & -12 & 8 \end{bmatrix}$$

           $$=4\begin{bmatrix} -2 & 3 & 3 \\ -3 & 2 & -3 \\ -3 & -3 & 2 \end{bmatrix}$$
  • Question 7
    1 / -0
    $$\displaystyle A_{1},B_{1},C_{1}$$ are respectively the co-factors of $$\displaystyle a_{1},b_{1},c_{1}$$ of the determinant $$\displaystyle \Delta = \begin{vmatrix}a_{1} &b_{1}  &c_{1} \\a_{2}  &b_{2}  &c_{2} \\a_{3} &b_{3}  &c_{3}\end{vmatrix}$$ then $$\displaystyle \begin{vmatrix}B_{2} &C_{2} \\B_{3} &C_{3}\end{vmatrix}$$ equals
    Solution
    For $$\Delta =\begin{vmatrix} { a }_{ 1 } & { b }_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & { b }_{ 3 } & { c }_{ 3 } \end{vmatrix}$$ 
    Let $$R=\begin{vmatrix} { A }_{ 1 } & { B }_{ 1 } & { C }_{ 1 } \\ { A }_{ 2 } & { B }_{ 2 } & { C }_{ 2 } \\ { A }_{ 3 } & { B }_{ 2 } & { C }_{ 3 } \end{vmatrix}$$ is the matrix of cofactor 
    Then $${ a }_{ 1 }\Delta =\begin{vmatrix} { B }_{ 2 } & { C }_{ 2 } \\ { B }_{ 2 } & { C }_{ 3 } \end{vmatrix}$$
  • Question 8
    1 / -0
    If $$\displaystyle A= \begin{bmatrix}2 &14  &17 \\0  &\sin 2x  &\cos 2x \\0  &\cos 2x  &\sin 2x \end{bmatrix}$$ then $$\displaystyle \left | A \right |$$ equals
    Solution
    $$\displaystyle A= \begin{bmatrix}2 &14  &17 \\0  &\sin 2x  &\cos 2x \\0  &\cos 2x  &\sin 2x \end{bmatrix}$$

    $$\displaystyle \left | A \right |=2(\sin^{2}2x-\cos^{2}2x)=-2\cos 4x$$
  • Question 9
    1 / -0
    If $$x$$ is a non-real cube root of $$-2$$, then the value of
    $$\begin{vmatrix}
    1 & 2x & 1\\
    x^{2} & 1 & 3x^{2}\\
    2 & 2x & 1
    \end{vmatrix}$$ equals to
    Solution
    Given, $$x=\sqrt [ 3 ]{ -2 } $$

    $$\Rightarrow x^{3}=-2$$

    $$\begin{vmatrix} 1 & 2x & 1 \\ x^{ 2 } & 1 & 3x^{ 2 } \\ 2 & 2x & 1 \end{vmatrix}$$

    $$=(1-6x^{3})-2x(-5x^{2})+1(2x^{3}-2)$$

    $$=13-20-6$$

    $$=-13$$

  • Question 10
    1 / -0
    If a. b, c are negative and different real numbers then $$\displaystyle \Delta=\begin{vmatrix}a &b  &c \\ b &c  &a \\c  &a  &b \end{vmatrix}$$ is
    Solution
    $$\displaystyle \Delta=\begin{vmatrix}a &b  &c \\ b &c  &a \\c  &a  &b \end{vmatrix}$$

    $$\displaystyle \Delta =(a+b+c) \begin{vmatrix} 1 & b & c\\ 1 & c & a\\ 1 & a & b\end{vmatrix}$$ 

     $$ =-(a+b+c) [a^{2}+b^{2}+c^{2}-ab-bc-ca] \Delta =-\left(\dfrac{a+b+c}{2}\right) [(a-b)^{2}+(b-c)^{2}+(c-a)^{2}]$$

    $$\displaystyle \Delta > 0 $$ as $$\displaystyle a \neq b \neq c,a,b,c < 0$$ 

    $$\displaystyle \therefore a+b+c <0 $$ 

    $$\displaystyle \therefore \frac{-(a+b+c)}{2}>0 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now