Self Studies

Determinants Test - 39

Result Self Studies

Determinants Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The point with the co-ordinates $$(2a,\ 3a),\ (3b,\ 2b)$$ & $$(c,\ c)$$ are collinear _____________ .
    Solution
    $$\Delta=\dfrac {1}{2}\begin{vmatrix}x_1 & y_1 & 1\\ x_2 & y_2 & 1\\x_3 & y_3 & 1\end{vmatrix}=0$$

    $$\Delta=\dfrac {1}{2}\begin{vmatrix}2a & 3a & 1\\ 3b & 2b & 1\\c & c & 1\end{vmatrix}=0$$

    $$\Rightarrow (2a-c)(2b-c)-(3a-c)(3b-c)=0$$

    $$\Rightarrow 4ab-2ac-2bc+c^2=(9ab-3ac-3bc+c^2)=0$$

    $$\Rightarrow ac+bc-5ab=0$$

    $$\dfrac {1}{a}+\dfrac {1}{b}=\dfrac {5}{c}\Rightarrow \dfrac {1}{a}+\dfrac {1}{b}=2\left (\dfrac {5}{2c}\right )$$

    $$\because$$$$\dfrac {1}{a},\dfrac {5}{2c}\, and\, \dfrac{1}{b} $$ are in $$A.P.$$

    $$\therefore a, \dfrac {2c}{5}, b$$ are in H.P.
  • Question 2
    1 / -0
    If lines AB, AC, AD and AE are parallel to a line then_______
    Solution
    Gievn Line $$AB,AC,AD,AE$$ are parallel so they are only and only they are collinear 
    Because if we draw line AB To point C we find line AC similarly in moving forward we Get line AC.AD and AE
    Hence $$A,B,C,D,E $$ are collinear points
  • Question 3
    1 / -0
    The adjoint of the matrix $$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix}$$ is:
    Solution
    Cofactor of the matrix is given by 
    $$\begin{bmatrix} M11 & -M12 & M13 \\ -M21 & M22 & -M23 \\ M31 & -M32 & M33 \end{bmatrix}$$
    where$$ M11 $$= $$\begin{bmatrix} 2 & -1\\ 5 & 2 \end{bmatrix} = 4+5=9$$
    $$M12$$ = $$\begin{bmatrix} 0 & -1 \\ -4 & 2 \end{bmatrix} = 0-4 =-4$$
    $$M13$$ = $$\begin{bmatrix} 0 & 2 \\ -4 & 5 \end{bmatrix} = 0+8=8$$
    $$M21$$ = $$\begin{bmatrix} -2 & 3 \\ 5 & 2\end{bmatrix} = -4-15=-19$$
    $$M22$$= $$\begin{bmatrix} 1 & 3 \\ -4& 2 \end{bmatrix} = 2+12=14$$
    $$M23$$ = $$\begin{bmatrix} 1 & -2 \\ -4 & 5 \end{bmatrix} = 5-8=-3$$
    $$M31$$ = $$\begin{bmatrix} -2& 3  \\ 2 & -1 \end{bmatrix} = 2-6=-4$$
    $$M32$$ = $$\begin{bmatrix} 1 &3 \\ 0 & -1\end{bmatrix} = -1-0=-1$$
    $$M33 $$= $$\begin{bmatrix} 1 & -2\\ 0 & 2 \end{bmatrix} = 2-0=2$$
    substituting all the values in the Cofactor of the matrix formula we get,
    $$\begin{bmatrix} 9 & 4 & 8 \\ 19 & 14 & 3\\ -4 & 1 & 2\end{bmatrix}$$
    the adjoint of the matrix is transpose of cofactor matrix
    $$\therefore$$ Adjoint of the matrix is
    $$\begin{bmatrix} 9 & 19 & -4 \\ 4 & 14& 1 \\ 8 & 3 & 2 \end{bmatrix}$$
  • Question 4
    1 / -0
    If $$A$$ and $$B$$ are square matrices of same orders then adj. $$(AB)$$ equals
    Solution
    $$(AB)^{-1}=\displaystyle\frac{adj(AB)}{|AB|}$$
    $$\Rightarrow B^{-1}A^{-1}=\displaystyle\frac{adj(AB)}{|AB|}$$
    $$\Rightarrow \displaystyle\frac{adj B}{|B|}\frac{adj A}{|A|}=\frac{adj(AB)}{|A||B|}$$
    $$\therefore adj(AB)=(adj B)(adj A)$$
    Hence, option B.

  • Question 5
    1 / -0
    If $$A = (a_{ij})$$ is a $$4\times 4$$ matrix and $$C_{ij}$$ is the co-factor of the element $$a_{ij}$$ in Det (A), then the expression $$a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} + a_{14}C_{14}$$ equals
    Solution

  • Question 6
    1 / -0
    Let $$A = [a_{ij}]_{n\times n}$$ be a square matirx and let $$c_{ij}$$ be cofactor of $$a_{ij}$$ in A. If $$C = [c_{ij}]$$, then
    Solution
    $$C\rightarrow$$ Cofactor matrix
    $$AdjA= \left (C \right )^{^{T}}$$
    But det of $$AdjA= Det \quad of  \quad C$$
    Because they are transpore of each other .
    $$\Rightarrow\left  | AdjA \right | = \left | C \right |= \left | A \right |^{n-1} $$
    Option-B
  • Question 7
    1 / -0
    The minors and cofactors of -4 and 9 in determinant $$\begin{vmatrix} -1 & -2 & 3 \\ -4 & -5 & -6 \\ -7 & 8 & 9\end{vmatrix}$$ are respectively
    Solution
    Minor of -4 is $$\begin{vmatrix} -2\quad  & 3 \\ 8 & 9 \end{vmatrix}=-42$$
    Cofactor of -4 is $${ \left( -1 \right)  }^{ 1+2 }\left( 42 \right) =42$$

    Minor of 9 is $$\begin{vmatrix} -1\quad  & -2 \\ -4 & -5 \end{vmatrix}=-3$$
    Cofactor of 9 is $${ \left( -1 \right)  }^{ 3+3 }.\left( 3 \right) =-3$$
  • Question 8
    1 / -0
    If in the determinant $$\Delta=\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, A_i, B_i, C_i$$ etc. be the co-factors of $$a_i, b_i, c_i$$ etc., then which of the following relations is incorrect?
    Solution
    $$\Delta=\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, A_1, B_1, C_1$$ etc. be the co-factors of $$a_1, b_1, c_1$$ etc.
    Sum of product of any row with its corresponding cofactors is Determinant.
    $$\Rightarrow a_1A_1+b_1B_1+c_1C_1=a_2A_2+b_2B_2+c_2C_2=a_3A_3+b_3B_3+c_3C_3=\Delta $$
    Sum of product of any row with another row's  cofactors is $$0$$.
    $$\Rightarrow a_1A_2+b_1B_2+c_1C_2=0$$
    Hence, option D is incorrect.
  • Question 9
    1 / -0
    If $$A+B+C=\pi$$, then $$\begin{vmatrix}sin(A+B+C) & sin B & cos C\\ -sinB & 0 & tan A\\ cos(A+B) & -tanA & 0\end{vmatrix}$$ equals
    Solution
    $$\Delta =\begin{vmatrix} \sin { \left( A+B+C \right)  }  & \sin { B }  & \cos { C }  \\ -\sin { B }  & 0 & \tan { A }  \\ \cos { \left( A+B \right)  }  & -\tan { A }  & 0 \end{vmatrix}$$

    $$ =\begin{vmatrix} \sin { \left( \pi  \right)  }  & \sin { B }  & \cos { C }  \\ -\sin { B }  & 0 & \tan { A }  \\ \cos { \left( \pi -C \right)  }  & -\tan { A }  & 0 \end{vmatrix}$$

    $$ =\begin{vmatrix} 0 & \sin { B }  & \cos { C }  \\ -\sin { B }  & 0 & \tan { A }  \\ -\cos { \left( C \right)  }  & -\tan { A }  & 0 \end{vmatrix}$$

    $$ =-\sin { B } \left( \tan { A } \cos { C }  \right) +\cos { C } \left( \sin { B\tan { A }  }  \right) =0$$
  • Question 10
    1 / -0
    If $$f(x)=\begin{vmatrix} cos x & 1 & 0 \\ 1 & cos x & 1 \\ 0 & 1 & cos x\end{vmatrix}$$ the $$f'(\dfrac \pi 3)$$ equals
    Solution
    Given, $$f\left( x \right) =\begin{vmatrix} \cos { x }  & 1 & 0 \\ 1 & \cos { x }  & 1 \\ 0 & 1 & \cos { x }  \end{vmatrix}\\ =\cos { x } \left( \cos ^{ 2 }{ x-1 }  \right) -1\cos { x } \\ =\cos ^{ 3 }{ x } -\cos { x } -\cos { x } \\ =\cos ^{ 3 }{ x } -2\cos { x } $$
    Now 
    $$f^{ ' }\left( x \right) =-3\cos ^{ 2 }{ x } \sin { x } +2\sin { x } $$
    $$\displaystyle { f }^{ ' }\left( \frac { \pi  }{ 3 }  \right) =\frac { 5\sqrt { 3 }  }{ 8 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now