Self Studies

Determinants Test - 41

Result Self Studies

Determinants Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear is
    Solution

    Since the given points are collinear, they do not form a

    triangle, which means area of the triangle is Zero.


    Area


    of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (-5,1) $$ ; $$({ x }_{

    2 },{ y }_{ 2 }) = (1,p) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (4,-2)$$ in

    the area formula, we get


    $$ \left| \dfrac { -5(p+2) + 1(-2-1) + 4(1-p) } {2}  \right|  =

    0 $$

    $$ => -9p-9 = 0 $$

    $$ =>p = -1$$




  • Question 2
    1 / -0
    If the points (-2, -5), (2, -2) and (8, a) are collinear then value of a will be:
    Solution
    Given points $$A(-2,-5),B(2,-2),C(8,a)$$  are collinear 
    Hence area of triangle formed by A,B,C is zero 
    $$Area =\dfrac{1}{2}\begin{vmatrix}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{vmatrix}$$
    $$0=\dfrac{1}{2}\begin{vmatrix}-2&-5&1\\2&-2&1\\8&a&1\end{vmatrix}$$
    $$0=-2(-2-a)+5(2-8)+1(2a+16)$$
    $$4+2a-30+2a+16=0$$
    $$4a=10\Rightarrow a=\dfrac{5}{2}$$
  • Question 3
    1 / -0
    If the points $$A(1, 2) ,\ O (0, 0)$$ and $$C (a, b)$$ are collinear then 
    Solution

    $$\textbf{Step -1: Area of triangle in co-ordinate geometry.}$$

                     $$\text{Given points are }A(1, 2), O(0, 0), C(a, b)$$

                     $$\text{The points are said to be collinear if the area of }\triangle AOC = 0$$

                     $$\text{Area of }\triangle AOC = $$$$\dfrac{1}{2}[x_1(y_2 - y_3) + x_2(y_3-y_1)+x_3(y_1-y_2)]=0$$

    $$\textbf{Step -2: Substituting the given points in the formula.}$$

                     $$\text{Area of }\triangle AOC = $$$$\dfrac{1}{2}[1(0-b) + 0(b-2)+a(2-0)]=0$$

                     $$\Rightarrow - b +2a = 0$$

                     $$\Rightarrow 2a = b$$

    $$\textbf{Hence, the points A(1, 2) , O(0, 0) and C(a, b) are collinear when }$$$$\textbf{2a = b.}$$
  • Question 4
    1 / -0
    The points (-a ,-b), (0, 0) (a, b) and $$\displaystyle (a^{2},ab)$$ are
    Solution
    Let $$ A (-a, -b), B (0,0), C(a,b) $$ and $$ D({a}^{2},ab) $$
    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1
    } \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated
    using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2
    }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Distance between the points A$$

    (-a,-b) $$ and B $$ (0,0) = \sqrt { \left( 0 + a \right) ^{ 2 }+\left( 0 + b

    \right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points B$$

    (0,0) $$ and C $$ (a,b) = \sqrt { \left( a-0 \right) ^{ 2 }+\left( b-0

    \right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points C$$

    (a,b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} - a \right) ^{ 2 }+\left(ab - b

    \right) ^{ 2 } } =  (a-1)\sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points A$$

    (-a,-b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} + a \right) ^{ 2 }+\left(ab + b

    \right) ^{ 2 } } =  (a +1)\sqrt { {a}^{2} + {b}^{2} } $$

    Now. $$ AB+BC+CD = \sqrt { {a}^{2} + {b}^{2} } + \sqrt { {a}^{2} + {b}^{2} }+ (a-1)\sqrt { {a}^{2} + {b}^{2} } = (a +1)\sqrt { {a}^{2} + {b}^{2} }  = AD $$

    Hence, the points are collinear.

  • Question 5
    1 / -0
    The points (-a, -b), (0, 0), (a, b) and ($$\displaystyle a^{2}$$, ab) are
    Solution
    Let $$ A (-a, -b), B (0,0), C(a,b) $$ and $$ D({a}^{2},ab) $$

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1} \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2}+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Distance between the points A$$(-a,-b) $$ and B $$ (0,0) = \sqrt { \left( 0 + a \right) ^{ 2 }+\left( 0 + b \right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points B$$ (0,0) $$ and C $$ (a,b) = \sqrt { \left( a-0 \right) ^{ 2 }+\left( b-0\right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points C$$

    (a,b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} - a \right) ^{ 2 }+\left(ab - b

    \right) ^{ 2 } } =  (a-1)\sqrt { {a}^{2} + {b}^{2} } $$

    Distance between the points A$$(-a,-b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} + a \right) ^{ 2 }+\left(ab + b\right) ^{ 2 } } =  (a +1)\sqrt { {a}^{2} + {b}^{2} } $$

    Now.

    $$ AB+BC+CD = \sqrt { {a}^{2} + {b}^{2} } + \sqrt { {a}^{2} + {b}^{2}

    }+ (a-1)\sqrt { {a}^{2} + {b}^{2} } = (a +1)\sqrt { {a}^{2} + {b}^{2}

    }  = AD $$

    Hence, the points are collinear.

  • Question 6
    1 / -0
    The points (0, 8/3), (1, 3) and (82, 30) are the vertices of :
    Solution
    Let,  $$ P =(0, \dfrac {8}{3}),Q=(1,3),R=(82,30) $$

    Now,  m1 $$ = $$ slope of PQ $$ = \dfrac{3 \dfrac {8}{3}}{10} = \dfrac {1}{3} $$

    m2 $$ = $$ slope of QR  $$ = \dfrac {303}{821} = \dfrac {1}{3} $$

    Since, $$ m1 = m2 $$, the three points P, Q, R are collinear
  • Question 7
    1 / -0
    If the points $$(k, 2k),\ ( 3k, 3k)$$ and $$(3, 1)$$ are collinear then the value of $$k$$ is 
    Solution
    Since the given points are collinear, they do not form a triangle, which means area of the triangle is Zero
    The area of the triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y}_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$
    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (k,2k) $$ ; $$({ x}_{ 2 },{ y }_{ 2 }) = (3k,3k) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (3,1)$$ in the area formula, we get $$ \left| \frac { k(3k-1)+3k(1-2k)+3(2k-3k) }{ 2 }  \right|  =0 $$
    $$ => 3{k}^{2} -k + 3k-6{k}^{2} + 6k -9k = 0 $$
    $$ =>-3{k}^{2} -k = 0 $$
    $$ -k(3k+1) =0 $$
    $$ k = 0 $$ or $$ k = -\frac{1}{3} $$
  • Question 8
    1 / -0
    The points (-a, -b), (0, 0), (a, b) and (a$$^2$$, ab) are
    Solution
    Let the points be $$ A (-a, -b), O (0, 0), B (a, b) $$ and $$ C ({a}^{2}, ab) $$

    Slope

    of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$

    and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ $$ = $$ $$\dfrac { { y }_{ 2 }-{

    y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$

    So, slope of the line joining OA $$ = \dfrac { -b-0 }{ -a-0 } = \dfrac {b}{a} $$

    Slope of the line joining OB $$ = \dfrac { b-0 }{ a-0} = \dfrac {b}{a} $$

    Slope of the line joining OC $$ = \dfrac { ab-0 }{{a}^{2}-0 } = \dfrac {b}{a} $$


    Since slopes of the lines, OA, OB, OC are equal, they are all collinear.
  • Question 9
    1 / -0
    Find the value of P for which the points A(-1, 3), B(2, P) and C(5, -1) are collinear :
    Solution

    Since the given points are collinear, they do not form a

    triangle, which means area of the triangle is Zero.


    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (-1,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (2,P) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,-1)$$

    in the area formula, we get

    $$ \left| \dfrac { (-1)(P + 1) + 2(-1-3) + 5(3-P) }{ 2 }  \right|  =

    0 $$

    $$ =>  -P - 1 - 8 + 15 - 5P = 0 $$

    $$ => 6P = 6 $$

    $$ => P = 1 $$
  • Question 10
    1 / -0
    If the points $$(5, 1),\  (1, p)\  \& \  (4, 2)$$ are collinear then the value of p will be 
    Solution

    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1})$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3})$$  is $$ \left| \dfrac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2}({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| $$

    Since the given points are collinear, they do not form a triangle, which means area of the triangle is Zero. 

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (5,1) $$ ; $$({ x}_{ 2 },{ y }_{ 2 }) = (1,P) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (4,2)$$ in the area formula, we get $$ \left| \dfrac { 5(P-2)+1(2-1)+4(1-P) }{ 2 }  \right|  =0 $$

    $$ => 5P-10+1+4-4P = 0 $$

    $$ => P = 5 $$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now