Let $$ A (-a, -b), B (0,0), C(a,b) $$ and $$ D({a}^{2},ab) $$
Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1
} \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated
using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2
}+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
Distance between the points A$$
(-a,-b) $$ and B $$ (0,0) = \sqrt { \left( 0 + a \right) ^{ 2 }+\left( 0 + b
\right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points B$$
(0,0) $$ and C $$ (a,b) = \sqrt { \left( a-0 \right) ^{ 2 }+\left( b-0
\right) ^{ 2 } } = \sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points C$$
(a,b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} - a \right) ^{ 2 }+\left(ab - b
\right) ^{ 2 } } = (a-1)\sqrt { {a}^{2} + {b}^{2} } $$
Distance between the points A$$
(-a,-b) $$ and D $$ ({a}^{2}, ab) = \sqrt { \left( {a}^{2} + a \right) ^{ 2 }+\left(ab + b
\right) ^{ 2 } } = (a +1)\sqrt { {a}^{2} + {b}^{2} } $$
Now. $$ AB+BC+CD = \sqrt { {a}^{2} + {b}^{2} } + \sqrt { {a}^{2} + {b}^{2} }+ (a-1)\sqrt { {a}^{2} + {b}^{2} } = (a +1)\sqrt { {a}^{2} + {b}^{2} } = AD $$
Hence, the points are collinear.