Self Studies

Determinants Test - 42

Result Self Studies

Determinants Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \begin{vmatrix} 2 & -4   \\ 9 & d-3   \end{vmatrix}=4$$ then $$d=$$
    Solution
    Given, determinant of the matrix $$ \begin{vmatrix} 2 & -4 \\ 9 & d-3 \end{vmatrix} = 4 $$
    $$ => 2(d-3) - (9)(-4) = 4 $$
    $$ => 2d-6+36 = 4 $$
    $$ => 2d = -26 $$
    $$ => d = -13 $$
  • Question 2
    1 / -0
    The value of $$\displaystyle \begin{vmatrix}a - b - c & 2a & 2a\\ 2b & b - c- a & 2b\\ 2c & 2c & c- a -b\end{vmatrix}$$ will be
    Solution
    $$\displaystyle \begin{vmatrix}a - b - c & 2a & 2a\\ 2b & b - c- a & 2b\\ 2c & 2c & c- a -b\end{vmatrix}$$ 

    $$R_1 \rightarrow R_1 + (R_2 + R_3)$$

    $$\begin{vmatrix}a+b+c & a+b+c & a+b+c\\2b  &b - c-a  & 2b\\2c  & 2c & c-a-b\end{vmatrix}$$

    Taking common term (a + b + c) from the first row

    $$= (a + b + c) \begin{vmatrix} 1& 1 & 1\\2b  & b-c-a & 2b\\ 2c & 2c & c-a-b\end{vmatrix}$$

    Subtracting first column from second and third column

    $$= (a + b + c) \begin{vmatrix}1 & 0 & 0\\ 2b & -b-c-a & 0\\ 2c & 0 & -c-a-b\end{vmatrix}$$

    On expansion in terms of

    $$R_1 = (a + b + c) \begin{vmatrix}-b-c-a & 0 \\ 0 & -c-a-b\end{vmatrix}$$
    .
    $$= (a + b+c)\{(-b-c-a)(-c-a -b)-0\}$$
    $$= (a + b+c)^3$$
  • Question 3
    1 / -0
    If the coordinates of the vertices of a triangle are (0,0) , (0,2) and(3,1) , then area of the triangle is 
    Solution
    Area of triangle $$=\frac{1}{2} \begin{vmatrix} 0 &0  &1  \\  0&2  &1  \\3  &1  &1  \end{vmatrix}= \frac{1}{2}\times|-6|=3$$
  • Question 4
    1 / -0
    Find the value of K if A(8, 1), B(K, -4), C(2, -5) are collinear :
    Solution

    Since the given points are collinear, they do not form a

    triangle, which means area of the triangle is Zero.


    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (8,1) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (k,-4) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (2,-5)$$
    the area formula, we get

    $$ \left| \frac {  8(-4+5) + k(-5-1) + 2(1+4) }{ 2 }  \right|  =

    0 $$
    $$ =>  8 - 6k  + 10 = 0 $$
    $$ => 6k = 18 $$

    $$ => k = 3 $$
  • Question 5
    1 / -0
    What is the value of y if $$(y, 3), (-5, 6)$$ and $$(-8, 8)$$ are collinear?
    Solution
    Let A(y,3),B(-5,6) and C(-8,8) be the given points
    Condition for collinear equation-
    $$x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)=0$$
    where $$x_1=y,x_2=3$$
                $$x_2=-5,y_2=6$$
                 $$x_3=-8,y_3=8$$
    $$\Rightarrow y(6-8)+-5(8-3)+-8(3-6)=0$$
    $$\Rightarrow 6y-8y-40+15-24+48=0$$
    $$\Rightarrow -2y-1=0$$
    $$\Rightarrow -2y=1$$
    $$\Rightarrow y=-\frac{1}{2}$$
  • Question 6
    1 / -0
    Which of the following points are collinear?
    Solution
    Ans option B
    Let A(3a,0),B(0,3b) and C(a,2b) be the given points
    Condition for collinear equation-
    $$x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)=0$$
    where $$x_1=3a,y_1=0$$
                $$x_2=0,y_2=3b$$
                 $$x_3=a,y_3=2b$$
    $$\Rightarrow 3a(3b-2b)+0(2b-0)+a(0-3b)=0$$
    $$\Rightarrow 3ab+0-3ab=0$$

  • Question 7
    1 / -0
    Find the value of K if (2, 3), (4, K) and (6, -3) are collinear :
    Solution

    Since the given points are collinear, they do not form a

    triangle, which means area of the triangle is Zero.


    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \dfrac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (2,3) $$ ; $$({ x

    }_{ 2 },{ y }_{ 2 }) = (4.k) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (6,-3)$$

    in the area formula, we get

    $$ \left| \dfrac { 2 (k+3) + 4(-3-3) + 6(3-k) }{ 2 }  \right|  =

    0 $$
    $$ =>  2k  + 6 -24 + 18 - 6k = 0 $$
    $$ => 4k = 0 $$

    $$ => k = 0 $$
  • Question 8
    1 / -0
    If $$\displaystyle \left[ \begin{matrix} \cos { \theta  }  \\ -\sin { \theta  }  \\ 0 \end{matrix}\begin{matrix} \sin { \theta  }  \\ \cos { \theta  }  \\ 0 \end{matrix}\begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] $$ then the value of $$\displaystyle { a }_{ 11 }{ A }_{ 11 }+{ a }_{ 12 }{ A }_{ 12 }+{ a }_{ 13 }{ A }_{ 13 }=$$ where $$\displaystyle { A }_{ 11 },{ A }_{ 12 }{ A }_{ 13 }$$ are cofactors of $$\displaystyle { a }_{ 11 },{ a }_{ 12 },{ a }_{ 13 }$$ respectively
    Solution
    $$A_{11} = \begin{vmatrix} \cos{\theta} & 0 \\ 0 & 1 \end{vmatrix} = \cos{\theta}$$ 

    $$A_{12} = - \begin{vmatrix} -\sin{\theta} & 0 \\ 0 & 1 \end{vmatrix} = \sin{\theta}$$

    $$A_{13} = \begin{vmatrix} -\sin{\theta} & \cos{\theta} \\ 0 & 0 \end{vmatrix} = 0$$

    Now, 
    $$a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = \cos^2{\theta} + \sin^2{\theta} = 1$$
  • Question 9
    1 / -0
    If $$z=\begin{vmatrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{vmatrix} $$, then $$i=\left( \sqrt { -1 }  \right) $$
    Solution
    Given $$z=\begin{vmatrix} 1 & 1+2i & -5i \\ 1-2i & -3 & 5+3i \\ 5i & 5-3i & 7 \end{vmatrix}$$
    $$=1(-21-(25+9))-(1+2i)(7-14i-(25i-15))-5i[(-1-13i)+15i]$$
    $$-55-(1+2i)(22-39i)-5i(-1+2i)$$
    $$=-55-100-5i+5i+10$$
    $$=-145$$ 
    Hence, $$z$$ is purely real.
  • Question 10
    1 / -0
    Find the correct option regarding given points $$(1, 2), (2, 4)$$ and $$(3, 6)$$ 
    Solution

    Area of the triangle with vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 2 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right|$$
    Here the points are $$(1,2)$$, $$(2,4)$$ and $$(3,6)$$, therefore, the area of the triangle is:
    $$A=\dfrac { 1 }{ 2 } \left| x_{ 1 }(y_{ 2 }-y_{ 3 })+x_{ 2 }(y_{ 3 }-y_{ 1 })+x_{ 3 }(y_{ 1 }-y_{ 2 }) \right| \\ A=\dfrac { 1 }{ 2 } \left| 1(4-6)+2(6-2)+3(2-4) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| 1(-2)+2(4)+3(-2) \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| -2+8-6 \right| \\ \Rightarrow A=\dfrac { 1 }{ 2 } \left| -8+8 \right| \\ \Rightarrow A=0$$
    Since the area of the triangle is zero,
    Hence, the points are collinear.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now