Self Studies

Determinants Test - 44

Result Self Studies

Determinants Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P = \begin{bmatrix} 1& 2 & 1\\ 1 & 3 & 1\end{bmatrix}, Q = PP^{T}$$, then the value of the determinant of $$Q$$ is
    Solution
    Given, 
    $$P = \begin{bmatrix} 1& 2 & 1\\ 1 & 3 & 1\end{bmatrix}$$

    $$\therefore Q = PP^{T} = \begin{bmatrix} 1& 2 & 1\\ 1 & 3 & 1\end{bmatrix} \begin{bmatrix} 1& 1\\ 2 & 3\\ 1 & 1\end{bmatrix}$$

    $$= \begin{bmatrix} 1\times 1 + 2\times 2 + 1\times 1& 1\times 1 + 2\times 3 + 1\times 1\\ 1\times 1 + 3\times 2 + 1\times 1 & 1\times 1 + 3\times 3 + 1\times 1\end{bmatrix}$$

    $$= \begin{bmatrix} 1 + 4 + 1& 1 + 6 + 1\\ 1 + 6 + 1 & 1 + 9 + 1\end{bmatrix} = \begin{bmatrix}6 & 8\\ 8 & 11\end{bmatrix}$$

    $$\therefore$$ The determinant of $$Q = \begin{bmatrix} 6& 8\\ 8 & 11\end{bmatrix}$$
     
    $$= 66 - 64 = 2$$
  • Question 2
    1 / -0
    Evaluate $$\begin{vmatrix} \cos 15^o& \sin 15^o\\ \sin 75^o & \cos 75^o\end{vmatrix}$$
    Solution
    Using fundamental theorem of determinant, 
    $$\begin{vmatrix} \cos 15^o& \sin 15^o\\ \sin 75^o & \cos 75^o\end{vmatrix}=\cos15^o\cos75^o-\sin15^0\sin75^o$$
    $$=\cos(75^o+15^o)=\cos90^o=0$$, [using sum to product formula]

    We have used the Fundamental theorem of determinant is $$\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc$$ 
  • Question 3
    1 / -0
    Let $$A$$ be a $$3 \times 3$$ matrix and $$B$$ be its adjoint matrix. If $$|B| = 64$$, then $$|A| =$$
    Solution
    $$|\text{adj}\,A|=|A|^{n-1}$$ where $$n$$ is the order of the square matirx.
    Hence $$|B|=|\text{adj}\,A|=|A|^{3-1}$$
    $$=|A|^{2}$$
    Therefore
    $$|A|=\sqrt{|B|}=\sqrt{64}=\pm8$$.
  • Question 4
    1 / -0
    The points $$(-a, -b), (a, b), (0, 0)$$ and $$(a^2, ab), a\ne 0, b\ne 0$$ are 
    Solution
    Let the points are $$A(-a,-b), B(a,b), C(0,0)$$ and $$D(a^2, ab)$$, then

    slope of line $$AB   =\dfrac{b}{a}=$$ slope of line $$BC =$$ slope of line $$CD =$$ slope of line $$DA$$

    Hence all the given $$4$$ points are collinear.

    Note: Slope of line joining the points $$(x_1,y_1)$$ and $$(x_2, y_2)$$ is given by $$\dfrac{y_2-y_1}{x_2-x_1}$$
  • Question 5
    1 / -0
    If a, b and c are in A, P., then the value of $$\begin{vmatrix}
    x+2 & x+3 &x+a \\
     x+4& x+5 &x+b \\
    x+6 & x+7 & x+c
    \end{vmatrix}$$ is.
    Solution
    $$\begin{vmatrix}x+2&x+3&x+a\\x+4&x+5&x+b\\x+6&x+7&x+c \end{vmatrix}$$

    $$=\begin{vmatrix}2x+8&2x+10&2x+(a+c)\\x+4&x+5&x+b\\x+6&x+7&x+c \end{vmatrix}$$, applying $$R_1\to R_1+R_3$$

    $$=\begin{vmatrix}2(x+4)&2(x+5)&2(x+b)\\x+4&x+5&x+b\\x+6&x+7&x+c \end{vmatrix}$$, since a,b,c are in A.P. $$ a+c=2b$$ 

    $$= 2\begin{vmatrix}x+4&x+5&x+b\\x+4&x+5&x+b\\x+6&x+7&x+c \end{vmatrix}$$, take 2 common from first row

    $$=2(0)=0$$, since  first and second row of the determinant are same
  • Question 6
    1 / -0
    If $$\Delta_r = \begin{vmatrix}2r - 1 & ^mC_r & 1\\ m^2 - 1 & 2^m & m+1\\ sin^2(m^2) & sin^2(m) & sin^2(m+1)\end{vmatrix}$$, then the value of $$\displaystyle \sum_{r = 0}^m \Delta_r$$, is
    Solution
    $$\Delta_r = \begin{vmatrix}2r -1 & ^mC_r & 1\\m^2 - 1  & 2^m & m+1\\ sin^2(m^2) & sin^2(m) & sin^2(m + 1)\end{vmatrix}$$

    $$\therefore \sum_{r = 0}^m  \Delta_r = \begin{vmatrix}\sum_{r = 0}^m (2r - 1) & \sum_{r = 0}^m { }^{m} C_r& \sum_{r = 0}^m 1\\ m^2 - 1 & 2^m & m+1\\ sin^2 (m^2) & sin^2(m) & sin^2(m + 1)\end{vmatrix}$$

    $$= \begin{vmatrix} m^2 -1& 2^m & m+1\\ m^2 - 1 & 2^m & m+1\\ sin^2 (m^2) & sin^2(m) & sin^2(m + 1)\end{vmatrix}$$

    $$=0$$   ($$\because$$ two rows are identical)
    Hence, option B is correct. 
  • Question 7
    1 / -0
    The value of the determinant $$\begin{vmatrix}1 & \cos (\alpha - \beta) & \cos \alpha\\ \cos(\alpha - \beta) & 1 & \cos \beta\\ \cos \alpha & \cos \beta & 1\end{vmatrix}$$ is
    Solution
    On solving the determinant, we have
    $$1(1 - \cos^{2}\beta) - \cos (\alpha - \beta) [\cos (\alpha - \beta) - \cos \alpha \cdot \cos \beta] + \cos \alpha [\cos \beta \cdot \cos (\alpha - \beta) - \cos \alpha]$$ 

    $$= 1 - \cos^{2}\beta - \cos^{2} \alpha - \cos^{2}(\alpha - \beta) + 2\cos \alpha \cdot \cos \beta . \cos (\alpha - \beta)$$

    $$= 1 - \cos^{2}\beta - \cos^{2} \alpha + \cos (\alpha - \beta) [2\cos \alpha. \cos \beta - \cos (\alpha - \beta)]$$

    $$= 1 - \cos^{2}\beta - \cos^{2} \alpha + \cos(\alpha - \beta) [\cos (\alpha + \beta) + \cos (\alpha - \beta) -\cos (\alpha - \beta)]$$

    $$= 1 - \cos^{2}\beta - \cos^{2} \alpha - \cos^{2} \alpha . \cos^{2}\beta - \sin^{2} \alpha . \sin^{2}\beta$$

    $$= 1 - \cos^{2} \beta - \cos^{2} \alpha (1 - \cos^{2}\beta) - \sin^{2} \alpha . \sin^{2}\beta$$

    $$= 1 - \cos^{2} \beta - \cos^{2} \alpha . \sin^{2}\beta - \sin^{2}\alpha. \sin^{2}\beta$$

    $$= (1 - \cos^{2}\beta) - \sin^{2} \beta(\sin^{2}\alpha + \cos^{2} \alpha)$$
    $$= \sin^{2}\beta - \sin^{2}\beta = 0$$

    Hence, determinant is $$0$$.
  • Question 8
    1 / -0
    The value of the determinant $$\begin{vmatrix}cos\, \alpha  & -sin \,\alpha   &1 \\ sin \, \alpha  & cos \, \alpha  & 1\\ cos (\alpha +\beta)  & -sin (\alpha +\beta ) & 1\end{vmatrix} $$ is
    Solution
    Given, $$\begin{vmatrix}cos\, \alpha  & sin \,\alpha   &1 \\ sin \, \alpha  & cos \, \alpha  & 1\\ cos (\alpha +\beta) & -sin (\alpha +\beta ) & 1\end{vmatrix} $$

    [Applying $$R_3\rightarrow R_3-R_1(cos \,\beta )+R_2(sin \, \beta )$$]

    $$\begin{vmatrix}cos\, \alpha  & sin \,\alpha   &1 \\ sin \, \alpha  & cos \, \alpha  & 1\\ 0  & 0 & 1+sin \,\beta -cos \,\beta \end{vmatrix} $$

    $$=(1 + sin \,\beta -cos\,\beta )(cos^2\alpha +sin^2\alpha )$$

    $$=1+sin\,\beta -cos \,\beta $$, which is independent of $$\alpha $$.
    Hence, option A is correct. 
  • Question 9
    1 / -0
    The centre of a circle is $$(-6,4)$$. If one end of the diameter of the circle is at $$(-12,8)$$, then the other end is at
    Solution
    The centre is the midpont of the line joining the two points of the diameter. 
    Using Midpoint-formula $$\left(\alpha,\beta\right)\equiv\left(\dfrac{{x}_{1}+{x}_{2}}{2},\dfrac{{y}_{1}+{y}_{2}}{2}\right)$$
    From above we have $$\alpha=-6,\beta=4$$ 
    Let $${x}_{1}=x,{y}_{1}=y$$
    Given$${x}_{2}=-12,{y}_{2}=8$$
    We have $$\alpha=\dfrac{{x}_{1}+{x}_{2}}{2}$$ and $$\beta=\dfrac{{y}_{1}+{y}_{2}}{2}$$
    $$x+\dfrac{\left(-12\right)}{2} = -6$$
    $$\Rightarrow x-6=-6$$
    $$\therefore x = 0$$
    $$\Rightarrow y+\dfrac{8}{2} = 4$$
    $$\Rightarrow y+4=4$$
    $$\therefore y = 0$$
    Hence, the other point is at $$\left(0,0\right)$$
  • Question 10
    1 / -0
    If $$A(x)=\begin{vmatrix} x+1 & 2x+1 & 3x+1 \\ 2x+1 & 3x+1 & x+1 \\ 3x+1 & x+1 & 2x+1 \end{vmatrix}$$ 
    then $$\displaystyle \int _{ 0 }^{ 1 }{ A(x) } dx=$$
    Solution
    $$ \\ A(x)=\begin{vmatrix} x+1 & 2x+1 & 3x+1 \\ 2x+1 & 3x+1 & x+1 \\ 3x+1 & x+1 & 2x+1 \end{vmatrix}\\ =(x+1)((3x+1)(2x+1)-(x+1)(x+1))-(2x+1)((2x+1)(2x+1)-(x+1)(3x+1)) +\\\,\,\,\,(3x+1)((x+1)(2x+1)-(3x+1)(3x+1))\\ A(x)=-18{ x }^{ 3 }-9{ x }^{ 2 }\\\displaystyle  \int _{ 0 }^{ 1 }{ A(x) } dx=\cfrac { -18 }{ 4 } { x }^{ 4 }-3{ x }^{ 3 }=\cfrac { -18 }{ 4 } -3=\cfrac {- 30 }{ 4 } =\cfrac { -15 }{ 2 } \\ $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now