Self Studies

Determinants Test - 45

Result Self Studies

Determinants Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$a, b$$ and $$c$$ are in $$AP$$, then determinant $$\begin{vmatrix}x + 2 & x + 3 & x + 2a\\ x + 3 & x + 4 & x + 2b\\ x + 4 & x + 5 & x + 2c\end{vmatrix}$$ is
    Solution
    Let $$\triangle = \begin{vmatrix}x + 2 & x + 3 & x + 2a\\ x + 3 & x + 4 & x + 2b\\ x + 4 & x + 5 & x + 2c\end{vmatrix}$$

    $$= \dfrac {1}{2} \begin{vmatrix}x + 2 & x + 3 & x + 2a\\ 0 & 0 & 2(2b - a - c)\\ x + 4 & x + 5 & x + 2c\end{vmatrix}$$ ......  (using $$R_{2}\rightarrow 2R_{2} - R_{1} - R_{2})$$

    But $$a, b$$ and $$c$$ are in $$AP$$ using $$2b = a + c$$, we get
    $$\triangle = \dfrac {1}{2} \begin{vmatrix}x + 2 & x + 3 & x + 2a\\ 0 & 0 & 0\\ x + 4 & x + 5 & x + 2c\end{vmatrix}$$
         $$=0$$  ........  (Since, all elements of $$R_{2}$$ are zero.)
    Hence, $$\begin{vmatrix}x + 2 & x + 3 & x + 2a\\ x + 3 & x + 4 & x + 2b\\ x + 4 & x + 5 & x + 2c\end{vmatrix}=0$$ 
  • Question 2
    1 / -0
    If $$\triangle (r) = \begin{vmatrix}r & r^{3}\\ 1 & n(n + 1)\end{vmatrix}$$, then $$\displaystyle \sum_{r = 1}^{n} \triangle (r)$$ is equal to
    Solution
    $$\triangle (r) = \begin{vmatrix}r & r^{3}\\ 1 & n(n + 1)\end{vmatrix}$$
    $$\implies \displaystyle \sum_{r = 1}{n} \triangle (r) = \begin{vmatrix}\displaystyle \sum_{r = 1}^{n}r &\displaystyle \sum_{r = 1}^{n}r^{3} \\ 1 & n(n + 1)\end{vmatrix}$$

    $$= \begin{vmatrix} \dfrac {n(n + 1)}{2}& \dfrac {[n(n + 1)]^{2}}{4}\\ 1 & n(n + 1)\end{vmatrix}$$

    $$= \dfrac {[n(n + 1)]^{2}}{2} - \dfrac {[n(n + 1)]^{2}}{4}$$

    $$= \dfrac {[n(n + 1)]^{2}}{4} = \displaystyle \sum_{r = 1}^{n} r^{3}$$
  • Question 3
    1 / -0
    If the points $$(2,5),(4,6)$$ and $$(a,a)$$ are collinear, then the value of $$a$$ is equal to
    Solution
    Consider the given points.
    $$(2, 5), (4, 6)$$ and $$(a, a)$$

    Since, these points are collinear means that the area of triangle must me zero.

    So,

    $$\dfrac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|=0$$

    where $$(x_1,y_1),(x_2,y_2),(x_3,y_3)$$ are the points
     
    Therefore,
    $$2(6-a)+4(a-5)+a(5-6)=0$$

    $$12-2a+4a-20+5a-6a=0$$

    $$a-8=0$$

    $$a=8$$

    Hence, this is the answer.
  • Question 4
    1 / -0
    If A is an invertible matrix, then what is $$det$$ $$(A^{-1})$$ equal to?
    Solution
    We know
    $$A{ A }^{ -1 }=I$$
    $$\Rightarrow \left| A{ A }^{ -1 } \right| =\left| I \right| $$
    $$\Rightarrow \left| A \right| \left| { A }^{ -1 } \right| =1$$
    $$\Rightarrow \left| { A }^{ -1 } \right| =\cfrac { 1 }{ \left| A \right|  } $$
    $$\Rightarrow \left| { A }^{ -1 } \right| =\left| A \right| ^{ -1 }$$
    Option B
  • Question 5
    1 / -0
    If $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} $$ and $$ B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$ then what is determinant of AB ?
    Solution
    Given $$A=\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$ and $$B=\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

    $$A\times B=\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}\times \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}=\begin{bmatrix} 1 \times 1+2 \times 0 & 1 \times 1+2 \times 0 \\ 2 \times 1+3 \times 0 & 2 \times 1+3 \times 0 \end{bmatrix}=\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}\\$$
    $$ \left| A\times B \right| =\begin{vmatrix} 1 & 1 \\ 2 & 2 \end{vmatrix}=2 \times 1-2 \times 1=0$$
  • Question 6
    1 / -0
    If $$\begin{vmatrix} 8 & -5 & 1 \\ 5 & x & 3\\ 6 & 3 & 1 \end{vmatrix} = 2 $$ then what is the value of $$x$$ ?
    Solution
    $$\begin{vmatrix} 8 & -5 & 1 \\ 5 & x & 3 \\ 6 & 3 & 1 \end{vmatrix}=2$$
    $$8\left( x-9 \right) +5\left( 5-18 \right) +1\left( 15-6x \right) =2$$
    $$8x-72-65+15-6x=2$$
    $$2x=122$$
    $$x=61$$
  • Question 7
    1 / -0
    The cofactor of the element $$4$$ in the determinant
                        $$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9 \end{vmatrix}$$
    is
    Solution
    Cofactor of element 4 in $$\left| \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right| $$ is $${(-1)}^3\left| \begin{matrix} 2 & 3 \\ 8 & 9 \end{matrix} \right| =6$$

    We got the matrice $$\left| \begin{matrix} 2 & 3 \\ 8 & 9 \end{matrix} \right| $$ after deleting column 1 and row 2.
  • Question 8
    1 / -0
    If $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1\\ 20 & 3 & i\end{vmatrix} =x+iy,$$ where $$i=\sqrt{-1}$$, then what is x equal to?
    Solution
    $$\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$$

    $${ R }_{ 1 }\rightarrow { R }_{ 1 }+{ R }_{ 2 }$$

    $$\begin{vmatrix} 6i+4 & 0 & 0 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$$

    $$6i+4(-3+3)=0$$

    $$\Rightarrow 0+i(0)=x+i4$$

    $$\Rightarrow x=0$$
  • Question 9
    1 / -0
    If $$\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{vmatrix}=0$$, then which one of the following is correct?
    Solution
    $$\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix}=0$$
    $$\Rightarrow a\left( { a }^{ 2 } \right) -b\left( -{ b }^{ 2 } \right) =0$$
    $$\Rightarrow { a }^{ 3 }=-{ b }^{ 3 }$$
    $$=\cfrac { a }{ b } =\sqrt [ 3 ]{ (-1) } $$
    Option B
  • Question 10
    1 / -0
    Which of the following are correct in respect of the system of equations $$x + y + z = 8, x - y + 2z = 6$$ and $$3x - y + 5z = k$$?
    1. They have no solution, if $$k = 15$$.
    2. They have infinitely many solutions, if $$k = 20$$.
    3. They have unique solution, if $$k = 25$$.
    Select the correct answer using the code given below
    Solution
    First we need to know if the above equations are linearly dependent or no,
    In order to figure that out lets find the determinant $$D$$ which is;
    $$D=\left| \begin{matrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & -1 & 5 \end{matrix} \right| =0$$
    as $$D=0$$ the equations are linearly dependent, which means the system of equations can either be inconsistent or have infinitely many solutions. That shall depend on the value of k.
    For there to be inifinitely many solutions , values of $${ D }_{ 1 }, { D }_{ 2 }, { D }_{ 3 }$$ should be $$0$$ , defined as;
    $${ D }_{ 1 }=\left| \begin{matrix} 8 & 1 & 1 \\ 6 & -1 & 2 \\ k & -1 & 5 \end{matrix} \right| \\ { D }_{ 2 }=\left| \begin{matrix} 1 & 8 & 1 \\ 1 & 6 & 2 \\ 3 & k & 5 \end{matrix} \right| \\ { D }_{ 3 }=\left| \begin{matrix} 1 & 1 & 8 \\ 1 & -1 & 6 \\ 3 & -1 & k \end{matrix} \right| $$
    which on solving you get;
    $${ D }_{ 1 }=\left| \begin{matrix} 8 & 1 & 1 \\ 6 & -1 & 2 \\ k & -1 & 5 \end{matrix} \right| =3k-60=3(k-20)\\ { D }_{ 2 }=\left| \begin{matrix} 1 & 8 & 1 \\ 1 & 6 & 2 \\ 3 & k & 5 \end{matrix} \right| =k-20\\ { D }_{ 3 }=\left| \begin{matrix} 1 & 1 & 8 \\ 1 & -1 & 6 \\ 3 & -1 & k \end{matrix} \right| =40-2k=-2(k-20)$$
    Now for all the Determinants to be zero , its evident that $$k=20$$
    Hence statement 2 is correct.
    Subsequently for there to be no solution $$k\neq 20$$, hence statement 1 is correct as well,
    As $$D$$ is zero the system of equations CANNOT have a unique solution hence, statement 3 is WRONG.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now