Self Studies

Determinants Test - 46

Result Self Studies

Determinants Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$m = \begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$ and $$n = \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}$$, then what is the value of the determinant of $$m \cos \theta - n \sin \theta$$?
    Solution
    $$m=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\quad n=\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
    $$m\cos { \theta  } -n\sin { \theta  } $$
    $$m\cos { \theta  } =\begin{bmatrix} \cos { \theta  }  & 0 \\ 0 & \cos { \theta  }  \end{bmatrix}$$
    $$n\sin { \theta  } =\begin{bmatrix} 0 & \sin { \theta  }  \\ -\sin { \theta  }  & 0 \end{bmatrix}$$
    $$m\cos { \theta  } -n\sin { \theta  } =\begin{bmatrix} \cos { \theta  }  & -\sin { \theta  }  \\ \sin { \theta  }  & \cos { \theta  }  \end{bmatrix}$$
    $$det=\cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  } $$
    $$=1$$
    Option C
  • Question 2
    1 / -0
    Let $$A = \begin{pmatrix}x + 2 & 3x\\ 3 & x + 2\end{pmatrix}, B = \begin{pmatrix}x & 0\\ 5 & x + 2\end{pmatrix}$$. Then all solutions of the equation $$det (AB) = 0$$ is
    Solution
    Given : $$A = \begin{pmatrix}x + 2 & 3x\\ 3 & x + 2\end{pmatrix}$$ and $$B = \begin{pmatrix}x & 0\\ 5 & x + 2\end{pmatrix}$$

    $$\implies AB = \begin{bmatrix}x^{2} + 17x & 3x^{2} + 6x\\ 8x + 10 & (x + 2)^{2}\end{bmatrix} = 0$$

    Now, $$det(AB) = \begin{vmatrix}x^{2} + 17x & 3x^{2} + 6x\\ 8x + 10 & (x + 2)^{2}\end{vmatrix} = 0$$
    $$\implies (x^{2}+17x)(x+2)^{2}-(3x^{2}+6x)(8x+10)=0$$
    $$\implies x(x+17)(x+2)^{2}-3x(x+2)(8x+10)=0$$
    $$\implies x(x+2)[(x+17)(x+2)-3(8x+10)]=0$$
    $$\implies x(x+2)[x^{2}+19x+34-24x-30]=0$$
    $$\implies x(x+2)[x^{2}-5x+4]=0$$
    $$\implies x(x + 2)(x - 4) (x - 1) = 0$$
    $$\implies x = 0, -2, 1, 4$$
  • Question 3
    1 / -0
    $$\begin{vmatrix}1 & 1 & 1\\ a & b & c\\ a^2 - bc & b^2 - ca & c^2 - ab\end{vmatrix} = $$
    Solution
    $$=\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ { a }^{ 2 }-bc & {     b }^{ 2 }-ca & {     c }^{ 2 }-ab \end{vmatrix} $$

    $$ =\begin{vmatrix} a & 1 & 0 \\ a-b & b & \left( c-b \right)  \\ \left( a-b \right) \left( a+b \right) +c\left( a-b \right)      & { b }^{ 2 }-ca     & \left( c-b \right) \left( c+b \right) +a\left( c-b \right)  \end{vmatrix}$$           ..........   $$  { C }_{ 1   }\rightarrow { C }_{ 1 }-{ C }_{ 2\\  }$$ and $$ { C }_{ 3 }\rightarrow { C }_{ 3 }-{ C }_{ 2 }$$

    $$ =\begin{vmatrix} 0 & 1 & 0 \\ \left( a-b \right)  & b & \left( c-b \right)  \\ \left( a-b \right) \left( a+b+c \right)      & { b }^{ 2 }-ac     & \left( c-b \right) \left( a+b+c \right)  \end{vmatrix}$$

    $$= \left( a-b \right) \left( c-b \right) \begin{vmatrix} 0 & 1 & 0 \\ 1 & b & 1 \\ a+b+c     & { b }^{ 2 }-ac     & a+b+c \end{vmatrix}$$

    $$ =\left( a-b \right) \left( c-b \right) \begin{vmatrix} 0 & 1 & 0 \\ 0 & b & 1 \\ 0   & { b }^{ 2 }-ac     & a+b+c \end{vmatrix}$$
    $$ =  0$$ 
  • Question 4
    1 / -0
    If $$A = \begin{bmatrix} 1& 2\\ 3 & 4\end{bmatrix}$$, then $$A^{-1} =$$
    Solution
    For $$2 \times 2$$ matrix $$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$, we swap the positions of a and d, put negatives in front of b and c, and divide everything by the determinant $$(ad-bc).$$
    So for $$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$ inverse of matrice is 
    $$ad-bc=1 \times 4-2 \times 3=-2$$
    $$A^{-1}=$$ $$\dfrac{1}{-2}\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$ 
  • Question 5
    1 / -0
    If $$\alpha, \beta, \gamma$$ are the roots of the equation $$x^{3} + px + q = 0$$ then the value of the determinant $$\begin{vmatrix} \alpha& \beta & \gamma\\ \beta & \gamma & \alpha\\ \gamma & \alpha & \beta\end{vmatrix}$$ is
    Solution
    As $$ \alpha,\beta,\gamma$$ are the roots of given equation

    $$\implies (\alpha +\beta +\gamma )=0$$
    Now, 
    $$\begin{vmatrix} \alpha  & \beta  & \gamma  \\ \beta  & \gamma  & \alpha  \\ \gamma  & \alpha  & \beta  \end{vmatrix}$$

    $$R_1\rightarrow R_1+R_2+R_3$$

    $$= \begin{vmatrix} \alpha +\beta +\gamma  & \alpha +\beta +\gamma  & \alpha +\beta +\gamma  \\ \beta  & \gamma  & \alpha  \\ \gamma  & \alpha  & \beta  \end{vmatrix}$$ 

    $$= (\alpha +\beta +\gamma )\begin{vmatrix} 1 & 1 & 1 \\ \beta  & \gamma  & \alpha  \\ \gamma  & \alpha  & \beta  \end{vmatrix}$$

    $$= (\alpha +\beta +\gamma )(\alpha \beta +\alpha \gamma +\beta \gamma -\alpha ^{ 2 }-\beta ^{ 2 }-\gamma ^{ 2 })$$

    $$\implies (\alpha +\beta +\gamma )(3(\alpha \beta +\alpha \gamma +\beta \gamma )-(\alpha +\beta +\gamma )^2)=0$$ as $$(\alpha +\beta +\gamma )=0$$
    Hence, option B is correct.
  • Question 6
    1 / -0
    Consider the following statements in respect of the determinant $$\begin{vmatrix}{\cos}^2\dfrac{\alpha}{2}&{\sin}^2\dfrac{\alpha}{2}\\{\sin}^2\dfrac{\beta}{2}&{\cos}^2\dfrac{\beta}{2}\end{vmatrix}$$ where $$\alpha , \beta$$ are complementary angles
    1. The value of the determinant is $$\dfrac{1}{\sqrt{2}}\cos \begin{pmatrix}\dfrac{\alpha - \beta}{2}\end{pmatrix}$$.
    2. The maximum value of the determinant is $$\dfrac{1}{\sqrt{2}}$$.
    Which of the above statements is/are correct?
    Solution
    Solution:
    We have, $$\triangle=\begin{bmatrix}\cos^2\cfrac{\alpha}{2}&\sin^2\cfrac{\alpha}2\\\sin^2\cfrac{\beta}2&\cos^2\cfrac{\beta}{2}\end{bmatrix}$$
    $$=\cos^2\cfrac{\alpha}2\cos^2\cfrac{\beta}2-\sin^2\cfrac{\alpha}2\sin^2\cfrac{\beta}{2}$$
    $$=\left(\cos\cfrac{\alpha}{2}\cos\cfrac{\beta}{2} +\sin\cfrac{\alpha}{2}\sin \cfrac{\beta}{2}\right)$$ $$\left(\cos\cfrac{\alpha}{2}\cos\cfrac{\beta}{2}-\sin\cfrac{\alpha}{2}\sin\cfrac{\beta}{2}\right)$$
    $$=\cos\left(\cfrac{\alpha-\beta}{2}\right)\cos45^\circ$$ ........ $$[\alpha , \beta ]$$ are complementry angles.
    $$=\cfrac1{\sqrt2}\cos\left(\cfrac{\alpha-\beta}{2}\right)$$ 
    Maximum value of $$\cos\left(\cfrac{\alpha-\beta}{2}\right)=1$$
    So, maximum value of $$\cfrac1{\sqrt2}\cos\left(\cfrac{\alpha-\beta}{2}\right)=\cfrac1{\sqrt2}$$
    Hence, C is the correct option.
  • Question 7
    1 / -0
    If $$A = \begin{vmatrix} a_{1} & b_{1} & c_{1}\\ a_{2} & b_{2} & c_{2}\\ a_{3} & b_{3} & c_{3}\end{vmatrix}$$ and $$B = \begin{vmatrix} c_{1}& c_{2} & c_{3}\\ a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\end{vmatrix}$$ then.
    Solution
    Let determinant of matrix, $$\begin{vmatrix} c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$ be $$y$$

    $$\begin{vmatrix} c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$
    exchanging row $$1$$ and row $$2$$, the determinant becomes $$-y$$
    $$ \begin{vmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ c_{ 1 } & c_{ 2 } & c_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \end{vmatrix}$$
    exchanging row $$2$$ and row $$3$$ the determinant becomes $$y$$
    $$ \begin{vmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \\ c_{ 1 } & c_{ 2 } & c_{ 3 } \end{vmatrix}$$
    Now taking transpose the determinant will remain $$y$$
    $$ \begin{vmatrix} { a }_{ 1 } & b_{ 1 } & { c }_{ 1 } \\ { a }_{ 2 } & { b }_{ 2 } & { c }_{ 2 } \\ { a }_{ 3 } & b_{ 3 } & c_{ 3 } \end{vmatrix}\\ \\ $$ 
    So, $$A=B$$
    (b) 
  • Question 8
    1 / -0
    If $$\begin{vmatrix}1 & sin \theta &1 \\ -sin \theta & 1 & sin \theta\\ -1 & -sin \theta & 1\end{vmatrix}$$ then,
    Solution
    Let $$\Delta = \begin{vmatrix}1 & sin \theta &1 \\ -sin \theta & 1 & sin \theta\\ -1 & -sin \theta & 1\end{vmatrix}$$ 
    $$=1(1+sin^2 \theta)-sin \theta (0)+1(sin^2 \theta +1)$$
    $$= 2 (1+sin^2 \theta)$$
    $$\because 0 \leq sin^2 \theta \leq 1$$
    $$\Rightarrow 1\leq 1+sin^2 \theta\leq 2$$
    $$\Rightarrow 2 \leq 2 (1+sin^2 \theta)\leq 4$$
    $$\Rightarrow 2 \leq \Delta \leq 4$$
    $$\Rightarrow \Delta \in [2,4]$$
  • Question 9
    1 / -0
    If $$ C = 2 \cos \theta $$ , then the value of the determinant $$ \triangle = \begin{vmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C  \end{vmatrix} $$ is :
    Solution
    Let $$ \triangle = \begin{vmatrix} C & 1 & 0 \\ 1 & C & 1 \\ 6 & 1 & C  \end{vmatrix} = C (C^2-1) -1(C-6) = C^3 - 2C + 6 $$
    Put $$ C = 2 \cos \theta $$ we get
    $$ \triangle = (2 \cos \theta)^3 - 2(2 \cos \theta) + 6 $$
    $$ = 8 \cos^3 \theta - 4 \cos \theta + 6 $$
  • Question 10
    1 / -0
    If $$\begin{vmatrix} x & 2 & 8 \\ 2 & 8 & x \\ 8 & x & 2 \end{vmatrix}=\begin{vmatrix} 3 & x & 7 \\ x & 7 & 3 \\ 7 & 3 & x \end{vmatrix}=\begin{vmatrix} 5 & 5 & x \\ 5 & x & 5 \\ x & 5 & 5 \end{vmatrix}=0$$ then $$x$$ is equal to
    Solution
    On applying $${ R }_{ 1 }\rightarrow { R }_{ 1 }+{ R }_{ 2 }+{ R }_{ 3 }$$ in each determinant, we can take out $$\left( x+10 \right) $$ common.
    Then, we get $$x+10=0$$
    $$\Rightarrow x=-10$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now