Self Studies

Determinants Test - 47

Result Self Studies

Determinants Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{vmatrix} 1 & -1 & 1\\ 0 & 2 & -3\\ 2 & 1 & 0\end{vmatrix}$$ and $$B=(adj A)$$, and $$C=5A$$, then $$\displaystyle\frac{|adj B|}{|C|}$$ is?
    Solution
    $$|adj(A)|=|A|^{n-1} \dots eqn (1)$$  (property of adjoint of  matrix)

    $$|A|=1(3)+1(6)+1(-4)=5\dots eqn(2)$$

    from the eqn (1) and (2)
    $$|B|= 5^{3-1}= 5^2$$
    $$\dfrac{|adj(B)|}{|C|}= \dfrac{5^2}{5\times5}=1$$ 
  • Question 2
    1 / -0
    If the determinant $$\Delta =\begin{vmatrix} 3 & -2 & \sin { 3\theta  }  \\ -7 & 8 & \cos { 2\theta  }  \\ -11 & 14 & 2 \end{vmatrix}=0$$, then the value of $$\sin { \theta  } $$ is
    Solution
    Applying $${ R }_{ 2 }\rightarrow { R }_{ 2 }+4{ R }_{ 1 }$$ and $${ R }_{ 3 }\rightarrow { R }_{ 3 }+7{ R }_{ 1 }$$ we get
    $$\begin{vmatrix} 3 & -2 & \sin { 3\theta  }  \\ 5 & 0 & \cos { 2\theta  } +4\sin { 3\theta  }  \\ 10 & 0 & 2+7\sin { 3\theta  }  \end{vmatrix}=0$$
    $$\Rightarrow 2\left[ 5\left( 2+7\sin { 3\theta  }  \right) -10\left( \cos { 2\theta  } +4\sin { 3\theta  }  \right)  \right] =0$$
    $$\Rightarrow 2+7\sin { 3\theta  } -2\cos { 2\theta  } -8\sin { 3\theta  } =0$$
    $$\Rightarrow 2-2\cos { 2\theta  } -\sin { 3\theta  } =0$$
    $$\Rightarrow \sin { \theta  } \left( 4\sin ^{ 2 }{ \theta  } +4\sin { \theta  } -3 \right) =0$$ 
    $$\Rightarrow \sin { \theta  } =0$$ or $$\left( 2\sin { \theta  } -1 \right) =0$$ or $$\left( 2\sin { \theta  } +3 \right) =0$$
    $$\Rightarrow \sin { \theta  } =0$$ or $$\sin { \theta  } =\dfrac { 1 }{ 2 } $$
  • Question 3
    1 / -0
    If the matrix $$A=\begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix},xyz=60$$ and $$8x+4y+3z=10$$, then $$A(adj\quad A)$$ is equal to
    Solution
    $$\because A\cdot dj(A)=\left| A \right| I\quad $$$$\therefore \left| A \right| =xyz-8x-3(z-8)+2(2-2y)$$$$=60-20+28=68\quad $$$$\quad \therefore A\cdot adj(A)=68\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$$∵A⋅dj(A
    $$\because A\cdot dj(A)=\left| A \right| I\quad $$
    $$\therefore \left| A \right| =xyz-8x-3(z-8)+2(2-2y)$$
    $$=60-20+28=68\quad $$
    $$\quad \therefore A\cdot adj(A)=68\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 68 & 0 & 0 \\ 0 & 68 & 0 \\ 0 & 0 & 68 \end{bmatrix}$$ 
  • Question 4
    1 / -0
    If $$A=\begin{bmatrix} x & x-1 \\ 2x & 1 \end{bmatrix}$$ and if $$\text{det}A=-9$$, then the values of $$x$$ are
    Solution
    Given, $$A=\begin{bmatrix} x & x-1 \\ 2x & 1 \end{bmatrix}$$, $$\text{det} A=-9$$ 
    $$\Rightarrow \left| A \right| =\begin{vmatrix} x & x-1 \\ 2x & 1 \end{vmatrix}$$
    $$\Rightarrow -9=x-2x\left( x-1 \right) $$
    $$\Rightarrow -9=x-2{ x }^{ 2 }+2x$$
    $$\Rightarrow 2{ x }^{ 2 }-3x-9=0$$
    $$\Rightarrow 2{ x }^{ 2 }-6x+3x-9=0$$ 
    $$\Rightarrow 2x\left( x-3 \right) +3\left( x-3 \right) =0$$
    $$\Rightarrow \left( x-3 \right) \left( 2x+3 \right) =0$$
    $$\Rightarrow x=3,-\dfrac { 3 }{ 2 } $$
  • Question 5
    1 / -0
    If $$A=\begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$$ and $$det(A)=\begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 6 & 7 \end{vmatrix}$$ then the value of $$x$$ is
    Solution
    Given, $$A=\begin{bmatrix} x & 1 & -x \\ 0 & 1 & -1 \\ x & 0 & 7 \end{bmatrix}$$. Then
    det $$(A) = x7-1(0+x)-x(0-x)$$
    $$=7x-x+x^2=x^2+6x$$                   $$...(i)$$
    Also $$det(A)=\begin{vmatrix} 3 & 0 & 1 \\ 2 & -1 & 0 \\ 0 & 6 & 7 \end{vmatrix}$$
    $$=3(-7-0)-0+1(12)=-9$$               $$...(ii)$$
    From Eqs(i) and (ii), we get
    $$\quad { x }^{ 2 }+6x=-9$$
    $$\Rightarrow { x }^{ 2 }+6x+9=0\Rightarrow { (x+3) }^{ 2 }=0$$
    $$x+3=0$$
    $$x=-3$$
  • Question 6
    1 / -0
    If $$A=\begin{vmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{vmatrix}$$, then the value of $$\left| A \right| \left| adj\left( A \right)  \right| $$ is
    Solution
    $$A=\left| \begin{matrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{matrix} \right| =\\ \Rightarrow |A|={ a }^{ 3 }\left| \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right| ={ a }^{ 3 }\\ \left| adj(A) \right| ={ \left| A \right|  }^{ n-1 }$$
    Here $$n=3$$
    $$\Rightarrow \left| adj(A) \right| ={ \left| A \right|  }^{ 3-1 }={ \left| A \right|  }^{ 2 }={ a }^{ 6 }\\ \Rightarrow |A|.\left| adj(A) \right| ={ a }^{ 3 }.{ a }^{ 6 }={ a }^{ 9 }$$
    So option $$C$$ is correct 
  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} 1 & 2 & -1 \\ -1& 1 & 2 \\ 2 & -1 & 1\end{bmatrix}$$, then $$\text{det} (\text{adj}(\text{adj} A))$$ is equal to.
    Solution
    We have, $$A=\begin{bmatrix} 1 & 2 & -1\\ -1 & 1 & 2 \\ 2 & -1 & 1\end{bmatrix}$$
    $$\Rightarrow |A|=1(1+2)-2(-1-4)-1(1-2)$$
    $$=3+10+1=14$$
    We know that, for a square matrix of order $$n$$,
    $$\text{adj}(\text{adj} A)=|A|^{n-2}A,$$ if $$|A|\neq 0$$
    $$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=||A|^{n-2}A|$$
    $$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=(|A|^{n-2})^n|A|$$
    $$\Rightarrow \text{det}(\text{adj} (\text{adj} A))=|A|^{n^2-2n+1}$$
    Here, $$n=3$$ and $$|A|=14$$ 
    Therefore, $$ \text{det}(\text{adj}(\text{adj} A))=(14)^{3^2-2\times 3+1}=14^4$$.
  • Question 8
    1 / -0
    If $$3x+2y=I$$ and $$2x-y=O$$, where $$I$$ and $$O$$ are unit and null matrices of order $$3$$ respectively, then
    Solution
    We have,
    $$3x+2y=I$$              ...(i)
    $$2x-y=O$$               ....(ii)
    On multiplying equation (ii) by $$2$$, we get
    $$4x-2y=2\cdot O=O$$              ...(iii)
    On adding equations (i) and (iii), we get
    $$3x+2y=I$$
    $$4x-2y=O$$
    ____________
             $$7x=I$$
    $$\Rightarrow x=\dfrac { I }{ 7 } $$ or $$\dfrac { 1 }{ 7 } I$$
    From equation (i), we get
    $$2y=I-\dfrac { 3 }{ 7 } I=\dfrac { 4 }{ 7 } I$$
    $$\Rightarrow y=\dfrac { 2 }{ 7 } I$$
  • Question 9
    1 / -0
    If $$A = \begin{bmatrix}\cos x & \sin x\\ -\sin x & \cos x\end{bmatrix}$$ and $$A\ adj\ A = k\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$$ then the value of $$k$$ is
    Solution
    We know that,
    $$A(adj\ A) = |A|I$$
    Given, $$A = \begin{bmatrix}\cos x & \sin x\\ -\sin x & \cos x\end{bmatrix}$$
    $$|A| = \cos^{2}x + \sin^{2}x = 1$$
    $$|A| = \cos^{2} x + \sin^{2} x = 1$$
    $$\therefore A(adj A) = 1\cdot I=kI$$
    $$k = 1$$.  
  • Question 10
    1 / -0
    The value of $$a$$, for which the points $$(9, 5), (1, 2)$$ and $$(a, 8)$$ are collinear, is
    Solution
    Given, points $$(9, 5), (1, 2)$$ and $$(a, 8)$$ are collinear.
    $$\begin{vmatrix}9 & 5 & 1\\ 1 & 2 & 1\\ a & 8 & 1\end{vmatrix} = 0$$
    Applying operation $$R_{2}\rightarrow R_{2} - R_{1}, R_{3}\rightarrow R_{3} - R_{1}$$ we get
    $$\begin{vmatrix}9& 5 & 1\\ -8 & -3 & 0\\ a - 9 & 3 & 0\end{vmatrix} = 0$$
    Expanding along $$C_{3}$$, we get
    $$-24 + 3(a - 9) = 0$$ 
    $$\Rightarrow 3a - 51 = 0\Rightarrow a = 17$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now